Does an exploding brain network cause chronic pain?

January 12, 2018

New research reports that hyperreactive brain networks could play a part in the hypersensitivity of fibromyalgia.

A new study finds that patients with fibromyalgia have brain networks primed for rapid, global responses to minor changes. This abnormal hypersensitivity, called explosive synchronization (ES), can be seen in other network phenomena across nature.

Researchers from the University of Michigan and Pohang University of Science and Technology in South Korea report evidence of ES in the brains of people with fibromyalgia, a condition characterized by widespread, chronic pain. The paper, published in Scientific Reports, details only the second study of ES in human brain data.

"For the first time, this research shows that the hypersensitivity experienced by chronic pain patients may result from hypersensitive brain networks," says co-senior author Richard Harris, Ph.D., associate professor of anesthesiology at Michigan Medicine with the Chronic Pain and Fatigue Research Center. "The subjects had conditions similar to other networks that undergo explosive synchronization."

In ES, a small stimulus can lead to a dramatic synchronized reaction in the network, as can happen with a power grid failure (that rapidly turns things off) or a seizure (that rapidly turns things on). This phenomenon was, until recently, studied in physics rather than medicine. Researchers say it's a promising avenue to explore in the continued quest to determine how a person develops fibromyalgia.

"As opposed to the normal process of gradually linking up different centers in the brain after a stimulus, chronic pain patients have conditions that predispose them to linking up in an abrupt, explosive manner," says first author UnCheol Lee, Ph.D., a physicist and assistant professor of anesthesiology at Michigan Medicine. These conditions are similar to other networks that undergo ES, including power grids, Lee says.

'Electrically unstable' findings

The researchers recorded electrical activity in the brains of 10 female participants with fibromyalgia. Baseline EEG results showed hypersensitive and unstable brain networks, Harris says. Importantly, there was a strong correlation between the degree of ES conditions and the self-reported intensity of chronic pain reported by the patients at the time of EEG testing.

Lee's research team and collaborators in South Korea then used computer models of brain activity to compare stimulus responses of fibromyalgia patients to the normal condition. As expected, the fibromyalgia model was more sensitive to electrical stimulation than the model without ES characteristics, Harris says.

"We again see the chronic pain brain is electrically unstable and sensitive," Harris says.

He says this type of modeling could help guide future treatments for fibromyalgia. Since ES can be modeled essentially outside of the brain or in a computer, researchers can exhaustively test for influential regions that transform a hypersensitive network into a more stable one. These regions could then be targeted in living humans using noninvasive brain modulation therapies.

George Mashour, M.D., Ph.D., co-senior author and professor of anesthesiology at Michigan Medicine, says, "This study represents an exciting collaboration of physicists, neuroscientists and anesthesiologists. The network-based approach, which can combine individual patient brain data and computer simulation, heralds the possibility of a personalized approach to chronic pain treatment."
-end-


Michigan Medicine - University of Michigan

Related Chronic Pain Articles from Brightsurf:

Researchers are developing potential treatment for chronic pain
Researchers from the University of Copenhagen have developed a new way to treat chronic pain which has been tested in mice.

Molecular link between chronic pain and depression revealed
Researchers at Hokkaido University have identified the brain mechanism linking chronic pain and depression in rats.

How chikungunya virus may cause chronic joint pain
A new method for permanently marking cells infected with chikungunya virus could reveal how the virus continues to cause joint pain for months to years after the initial infection, according to a study published Aug.

Gastroesophageal reflux associated with chronic pain in temporomandibular joint
Gastroesophageal reflux (GERD) is associated with chronic, painful temporomandibular disorder -- pain in the temporomandibular joint -- and anxiety and poor sleep contribute to this association, according to a study in CMAJ.

One step closer to chronic pain relief
While effective drugs against chronic pain are not just around the corner, researchers from Aarhus University, Denmark, have succeeded in identifying a protein as a future potential target for medicinal drugs.

Gut bacteria associated with chronic pain for first time
In a paper published today in the journal Pain, a Montreal-based research team has shown, for the first time, that there are alterations in the bacteria in the gastrointestinal tracts of people with fibromyalgia.

Nearly 5.4 million cancer survivors suffer chronic pain
A new report finds about one in three cancer survivors (34.6%) reported having chronic pain, representing nearly 5.4 million cancer survivors in the United States.

New opioid speeds up recovery without increasing pain sensitivity or risk of chronic pain
A new type of non-addictive opioid developed by researchers at Tulane University and the Southeast Louisiana Veterans Health Care System accelerates recovery time from pain compared to morphine without increasing pain sensitivity, according to a new study published in the Journal of Neuroinflammation.

New target for chronic pain relief confirmed by scientists
A research group at Hiroshima University observed a potential new target for chronic pain treatment.

Menopause symptoms nearly double the risk of chronic pain
In addition to the other health conditions affected by estrogen, it has also been shown to affect pain sensitivity.

Read More: Chronic Pain News and Chronic Pain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.