Nav: Home

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018

BOSTON - The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of patients, suggesting that as-yet unidentified variations among tumors result in distinct paths of disease progression and response to therapy.

Now, researchers at the Cancer Center at Beth Israel Deaconess Medical Center (BIDMC) have demonstrated that genetic variations driving prostate cancer determine the composition of the immune cells that have been found to infiltrate primary prostate tumors. These immune cells, in turn, dictate tumor progression and response to treatment. The data, published in Nature Medicine, suggest that profiling patients' tumors based on this new information could lead to more successful clinical trials and tailored therapies for patients.

"We observed that specific genetic events resulted in striking differences in the composition of immune cells present in and around the tumor - results with important therapeutic implications," said senior author Pier Paolo Pandolfi, MD, PhD, Director of the Cancer Center and Cancer Research Institute at BIDMC. "Our data may be especially relevant for tailoring immunological therapies and for identifying responsive-patient population."

The third leading cause of cancer-related death in U.S. men, prostate cancer, is linked to a number of diverse genetic mutations that drive the disease. For example, the loss of the tumor suppressor gene PTEN is a frequent event in prostate cancer and is well known to promote the disease in combinations with a plethora of other mutations. Researchers also know that the tumor's microenvironment - the blood vessels, immune cells, signaling molecules and other factors that surround the tumor - plays an important role in tumor progression and response to therapy.

Pandolfi's team - including lead author, Marco Bezzi, a post-doctoral fellow in Pandolfi's lab - engineered mice models to represent four distinct known genetic variations of human prostate cancer. The models lacked either Pten alone or in combination with other genetic alterations known to drive the disease. When the team analyzed the tumors from these mice, they saw profound differences in the types and relative numbers of the immune cells that had accumulated in and around the tumor, what they call the tumors' "immune landscape".

For example, specific immune landscapes tumors from the genetic model lacking both Pten and the tumor suppressor gene called Trp53 demonstrated an increased accumulation of myeloid cells, the immune cells that mediate immunosuppression. In stark contrast, tumors from the genetic model lacking Pten and a different tumor suppressor gene called PML lacked intratumoral immune infiltration; that is, the researchers observed no immune cells at all in these tumors, which the scientists dubbed "cold," or "immune-deserts." All four mouse models analyzed presented very distinctive immune landscapes and these differences were maintained and exacerbated over time.

The research team also demonstrated that these differences in immune cell composition were directly dictated by the tumors themselves because of their genetic variations. Different tumors, they observed, secreted distinct chemical attractants, which in turn recruited - or didn't recruit, in the case of the immune-desert tumors - different immune cell types into the tumor. Pandolfi and colleagues further demonstrated that these differences hold true in human prostate cancer. Critically, the immune cells recruited to the tumors were found to be essential in supporting the growth and progression of these tumors.

"We observed that when present, these infiltrating immune cells were required for the tumor to thrive and found therapies to block their recruitment to be effective," said Bezzi. "On the other hand, the cancer genotype characterized by the so-called 'immune desert' phenotype, did not respond to such therapies. On this basis, we can predict the tumor response to immunotherapies and tailor treatment modalities to effectively impact tumors that are otherwise extremely aggressive," he said.

Thus, because immune cells interact with and also affect tumor response to therapy, these findings may be especially relevant for the development of more precise and effective combinations of immunotherapies and targeted therapies on the basis of the cancer genetic makeup.

"These profound differences in immunological landscapes among various cancer genotypes further highlight the need to thoroughly investigate and integrate genotypes and immune-phenotypes in the context of exploratory cancer treatments in both preclinical and clinical settings," said Pandolfi.
-end-
In addition to Pandolfi and Bezzi, study authors include, Nina Seitzer, Tomoki Ishikawa, Markus Reschke, Ming Chen, Guocan Wang, Caitlin Mitchell, Christopher Ng, Jesse M. Katon, Andrea Lunardi, and John G. Clohessy, of BIDMC; Sabina Signoretti of Brigham and Women's Hospital; and Jiangwen Zhang of the University of Hong Kong.

This work was funded by the National Institutes of Health (R01 CA102142 and R35 CA197529) and by a Jane Coffin Childs Postdoctoral Fellowship.

About Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, MetroWest Medical Center, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Rehabilitation Center and is a research partner of Dana-Farber/Harvard Cancer Center and the Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox.

For more information, visit http://www.bidmc.org.

Beth Israel Deaconess Medical Center

Related Prostate Cancer Articles:

ASCO and Cancer Care Ontario update guideline on radiation therapy for prostate cancer
The American Society of Clinical Oncology (ASCO) and Cancer Care Ontario today issued a joint clinical practice guideline update on brachytherapy (internal radiation) for patients with prostate cancer.
Patient prostate tissue used to create unique model of prostate cancer biology
For the first time, researchers have been able to grow, in a lab, both normal and primary cancerous prostate cells from a patient, and then implant a million of the cancer cells into a mouse to track how the tumor progresses.
Moffitt Cancer Center awarded $3.2 million grant to study bone metastasis in prostate cancer
Moffitt researchers David Basanta, Ph.D., and Conor Lynch, Ph.D., have been awarded a U01 grant to investigate prostate cancer metastasis.
New findings concerning hereditary prostate cancer
For the first time ever, researchers have differentiated the risks of developing indolent or aggressive prostate cancer in men with a family history of the disease.
Prostate cancer discovery may make it easier to kill cancer cells
A newly discovered connection between two common prostate cancer treatments may soon make prostate cancer cells easier to destroy.
New test for prostate cancer significantly improves prostate cancer screening
A study from Karolinska Institutet in Sweden shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
The dilemma of screening for prostate cancer
Primary care providers are put in a difficult position when screening their male patients for prostate cancer -- some guidelines suggest that testing the general population lacks evidence whereas others state that it is appropriate in certain patients.
Risk factors for prostate cancer
New research suggests that age, race and family history are the biggest risk factors for a man to develop prostate cancer, although high blood pressure, high cholesterol, vitamin D deficiency, inflammation of prostate, and vasectomy also add to the risk.
Prostate cancer is 5 different diseases
Cancer Research UK scientists have for the first time identified that there are five distinct types of prostate cancer and found a way to distinguish between them, according to a landmark study published today in EBioMedicine.
UH Seidman Cancer Center performs first-ever prostate cancer treatment
The radiation oncology team at UH Seidman Cancer Center in Cleveland performed the first-ever prostate cancer treatment April 3 using a newly-approved device -- SpaceOAR which enhances the efficacy of radiation treatment by protecting organs surrounding the prostate.

Related Prostate Cancer Reading:

Dr. Patrick Walsh's Guide to Surviving Prostate Cancer
by Patrick C. Walsh (Author), Janet Farrar Worthington (Author)

The Key to Prostate Cancer: 30 Experts Explain 15 Stages of Prostate Cancer
by Dr Mark Scholz (Author)

You Can Beat Prostate Cancer: And You Don't Need Surgery to Do It
by Robert J. Marckini (Author)

Prostate Cancer: A New Approach to Treatment and Healing
by Dr. Emilia A. Ripoll (Author), Mark B. Saunders (Author)

100 Questions & Answers About Prostate Cancer
by Pamela Ellsworth (Author)

Prostate and Cancer: A Family Guide to Diagnosis, Treatment, and Survival
by Sheldon Marks (Author)

Prostate Cancer Breakthroughs: The New Options You Need to Know About
by Jay S. Cohen (Author)

An ABC of Prostate Cancer Today: My Journey over 4 Continents to find the BEST Cure
by Alan G Lawrenson (Author)

Prostate Cancer For Dummies
by Paul H. Lange (Author), Christine Adamec (Author)

Thrive Don't Only Survive: Dr.Geo's Guide to Living Your Best Life Before & After Prostate Cancer
by Dr. Geo Espinosa (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.