Nav: Home

The combination of two proteins exerts a regenerating effect in Parkinson's disease

January 12, 2018

Parkinson's disease is currently the second most widespread neurogenerative pathology. It is a motor disorder caused by the loss of dopaminergic neurons in the black substance of the brain. These neurons are the nerve cells that produce dopamine, a neurotransmitter that plays a key role in the modulation of involuntary movements.

The research carried out at the UPV/EHU was developed in an experimental model that allows different stages of Parkinson's disease to be reproduced. The results showed that the changes caused by the condition were not homogeneous in the different parts of the brain affected. "The impairment is correlated with the specific anatomic distribution of the dopaminergic neurons and their terminals," pointed out the researcher Catalina Requejo. In other words, those areas of the black substance in which the dopaminergic neurons have more connections with regions that remain whole were found to be less affected.

After confirming that the experimental model could be used to explore the morphological and functional changes caused by the disease, therapeutic strategies based on the release of neurotrophic factors were applied. These factors are proteins that encourage cell growth, plasticity and survival, and therefore play an essential role in controlling neuronal function.

Specifically, two factors were applied: the Vascular Endothelial Growth Factor (VEGF) and the Glial Cell-derived Neurotrophic Factor (GDNF). These molecules were delivered encapsulated in microspheres or in nanospheres, even smaller than the former, comprising a biocompatible, biodegradable polymer: Poly Lactic-co-glycolic Acid (PLGA), which allows them to be released continuously and gradually. Furthermore, the factors were administered in a combined way to determine whether, together, they induced a synergistic effect.

The results were encouraging in both the early and severe phase of the model. The combining of the VEGF and GDNF not only significantly reduced the degeneration of the dopaminergic neurons of the black substance, it also induced the formation of new cells and cellular differentiation. The researchers were also able to confirm that there had been an improvement in the areas where the nerve fibres in this region were projected. To confirm the synergistic, neurogenerative effect of the two factors, they administered a molecule that inhibits the receptors of the two neurotrophic factors they were studying. "The consequences for the dopaminergic system were even worse, which supports the beneficial synergistic effects exerted by the VEFG and the GDNF in Parkinson's," concluded the researcher.

Finally, it is worth highlighting that the best results were obtained when the factors were delivered encapsulated in nanospheres during the early phase of the disease replicated in the model. All this reinforces the importance of early diagnosis and that "nanotechnology could be a very useful tool when it comes to administering neurotrophic factors," she added.
-end-
Additional information

These pieces of work published in the prestigious scientific journal Molecular Neurobiology are the result of the PhD thesis by Catalina Requejo. It was conducted by the LaNCE Group of the Department of Neurosciences in the Faculty of Medicine and Nursing, and the Neuropharmacology group of the Faculty of Medicine and Nursing and the NanoBiocel group of the Faculty of Pharmacy were involved in it. Having obtained a degree in Biology from the UPV/EHU, she wrote up her PhD with international mention in Neurosciences achieving a Cum Laude distinction. Her PhD thesis, supervised by José Vicente Lafuente, tackled the morpho-functional analysis of the changes presented by an experimental model of Parkinson's and the effects of administering neurotrophic factors in the said model. After a three-month, pre-doctoral placement at the Harvard Medical School in Boston, she received a two-year postdoctoral scholarship at the Mount Sinai Hospital in New York where she conducted a study into the molecular and cellular mechanisms involved in autophagy activation for synuclein degradation.

Bibliographical reference

Lafuente JV, Requejo C, Carrasco A, Bengoetxea H. (2017) Nanoformulation: A Useful Therapeutic Strategy for Improving Neuroprotection and the Neurorestorative Potential in Experimental Models of Parkinson's Disease. Int Rev Neurobiol; 137:99-122. DOI: 10.1016/bs.irn.2017.09.003. Epub 2017 Oct 20.

Requejo C, Ruiz-Ortega JA, Bengoetxea H, Bulnes S, Ugedo L, Lafuente JV. Deleterious effect of VEGFR2 and RET inhibition in a preclinical model of Parkinson's disease (2017b). Mol Neurobiol. DOI: 10.1007/s12035-017-0733-x.

Requejo C, Ruiz-Ortega J.A., Bengoetxea H, García-Blanco A, Herrán E, Aristieta A, Igartua M, Pedraz J.L., Ugedo L, Hernández R.M., Lafuente J.V. (2017a) Morphological changes in a severe model of Parkinson's disease and its suitability to test the therapeutic effects of microencapsulated neurotrophic factors. Mol Neurobiol. Dec; 54(10):7722-7735. DOI: 10.1007/s12035-016-0244-1. Epub 2016 Nov 14.

Requejo C, Ruiz-Ortega, J.A., Bengoetxea, H., Garcia-Blanco, A., Herrán, E., Aristieta, A., Igartua, M., Ugedo, L., Pedraz, J.L., Hernández, R.M., Lafuente, J.V. (2015) Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease-Effects of Nanoencapsulated Neurotrophic Factors Administration. Mol Neurobiol, 52(2), 846-58. DOI: 10.1007/s12035-015-9234-y. Epub 2015 Jun 4.

University of the Basque Country

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Person You Become
Over the course of our lives, we shed parts of our old selves, embrace new ones, and redefine who we are. This hour, TED speakers explore ideas about the experiences that shape the person we become. Guests include aerobatics pilot and public speaker Janine Shepherd, writers Roxane Gay and Taiye Selasi, activist Jackson Bird, and fashion executive Kaustav Dey.
Now Playing: Science for the People

#479 Garden of Marvels (Rebroadcast)
This week we're learning about botany and the colorful science of gardening. Author Ruth Kassinger joins us to discuss her book "A Garden of Marvels: How We Discovered that Flowers Have Sex, Leaves Eat Air, and Other Secrets of the Way Plants Work." And we'll speak to NASA researcher Gioia Massa about her work to solve the technical challenges of gardening in space.