Nav: Home

Penn-led team uncovers the physiology behind the hour-long mating call of midshipman fish

January 12, 2018

According to the Guinness World Records, the longest any person has held a continuous vocal note is just shy of two minutes. That's quite an achievement.

Compared to the Pacific midshipman fish, however, the endurance of the human vocal cord is no match. Midshipman fish can generate a mating call that emits continuously from their bodies for a full hour.

Biologists have puzzled over how this was possible, as the call requires the fish to contract and relax muscles around their swim bladder very quickly -- 360,000 times in an hour, to be precise -- seemingly too fast for the necessary pumping of calcium ions required for muscle contraction.

A new study led by University of Pennsylvania researchers provides an explanation for this display of physiological fortitude. In an investigation featured on the cover of the Journal of General Physiology, the team discovered that the fish release very small amounts of calcium for each muscle contraction, allowing for a quick re-uptake that enables the process to continue uninterrupted to produce a sustained hum.

"These findings shed light on these fascinating creatures and this extraordinary ability," said Lawrence C. Rome, professor of biology in Penn's School of Arts and Sciences. "And in a broader sense the study opens our eyes to the idea that calcium doesn't always have to go all the way up and down in order to maintain muscle activity. It's something that may apply to other animals that move at high speeds."

Rome collaborated on the work with the Biology Department's Frank E. Nelson, now at Temple University; Stephen Hollingworth and Stephen M. Baylor of Penn's Perelman School of Medicine; and James O. Marx of Penn's School of Veterinary Medicine.

During the summer breeding season, male midshipman fish claim rocky nest sites on the sea floor and produce a sustained "hum" or mating call to attract females to spawn. This call can last an hour and reaches frequencies of 100 Hertz, which translates to 100 contractions and relaxations of the muscles around the swim bladder each second.

Scientists have observed the massive muscle growth of these super-fast twitch muscles around the males' swim bladders during the mating season but didn't understand how they could twitch so fast for so long. Each contraction requires the release of calcium ions from a storage vessel called the sarcoplasmic reticulum. Then this calcium must be pumped back in before the next contraction can occur.

For nearly three decades, Rome and colleagues have studied the Atlantic toadfish, which also vibrates its swim bladder to generate a mating call. In that species, the muscles around the swim bladder contract even faster, at rates of as much as 250 times a second, though unlike midshipman they have rest intervals between their calls.

In earlier studies, Rome and colleagues found that toadfish can accomplish this by reducing the amount of calcium they release and by using a protein called parvalbumin, which they possess in abundance, to bind calcium and slowly release it during the rest interval.

"They can't keep up in real time if they release the usual amount of calcium," said Rome. "So they release small amounts; then the parvalbumin binds it and can empty before the next call."

Midshipman do not have large amounts of parvalbumin like toadfish. So the researchers suspected they were enlisting some other strategy to sustain the muscle contractions for an hour. The midshipman were either pumping calcium at a rate much faster than toadfish, or the maximum level of calcium they release is lower, allowing them to pump it back into the sarcoplasmic reticulum fast enough to keep up with the muscle vibrations.

To find out which tack midshipman use, Rome and colleagues took bundles of muscle fibers from male midshipman and experimentally stimulated them, measuring the energy and calcium dynamics. They found that the maximum rate of the calcium pump in midshipman was significantly lower than in toadfish.

That pointed to the explanation that the midshipman were releasing small amounts of calcium, which follow-up studies showed was the case.

"The trick they play is that they release tiny amounts of calcium, about one-eighth of the amount as toadfish," Rome said. "The calcium pumps in operate closer to their maximum in midshipman which allows them to keep up with the tiny calcium releases in real time."

The researchers also discovered that the fish's muscle fibers contract once in response to a single stimulus, unlike the rapid movements seen in some insect species, such as the wings of mosquitoes and bees.

Further studies underscored the sexual dimorphism in the physiology of the swim bladder muscles: Females, which do not produce a call, have very thin white anaerobic muscles compared to the thick red aerobic muscles of the males.

The researchers believe that other characteristics of midshipman contribute to their unusual calling ability, such as a thicker "Z-line," the place where two sarcomeres, or units of muscle fiber come together. They also hyperinflate their swim bladders during calling. Further studies and new technologies that enable scientists to study living animals will also likely shed more light on midshipman as well as other species.

"By looking at a specialized case," said Rome, "we can see mechanisms that might apply more broadly."
-end-
The study was supported by the National Science Foundation (Grant IOS-1135981).

University of Pennsylvania

Related Calcium Articles:

A docking site per calcium channel cluster
In our brain, information is passed from one neuron to the next at a structure called synapse.
Astrophysicists discovered a star polluted by calcium
An international team of astrophysicists led by a scientist from the Sternberg Astronomical Institute of the Lomonosov Moscow State University reported the discovery of a binary solar-type star inside the supernova remnant RCW 86.
Daily reminders to increase calcium intake are effective
Mary Jung, an assistant professor of health and exercise sciences at UBC's Okanagan campus, recently completed a nationwide study with more than 730 Canadians who were not meeting Canada's recommended dietary intake for calcium.
New guideline on calcium and vitamin D supplementation
A new evidence-based clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology says that calcium with or without vitamin D intake from food or supplements that does not exceed the tolerable upper level of intake should be considered safe from a cardiovascular standpoint.
Calcium induces chronic lung infections
The bacterium Pseudomonas aeruginosa is a life-threatening pathogen in hospitals.
Calcium supplements may damage the heart
After analyzing 10 years of medical tests on more than 2,700 people in a federally funded heart disease study, researchers at Johns Hopkins Medicine and elsewhere conclude that taking calcium in the form of supplements may raise the risk of plaque buildup in arteries and heart damage, although a diet high in calcium-rich foods appears be protective.
Physics researchers question calcium-52's magic
After a multi-institution team's work computing the calcium-48 nucleus, researchers moved on to a larger, heavier, and more complex isotope -- calcium-52 -- and the results surprised them once again.
Study paves way for new therapies in fight against calcium disorders
A study led by researchers at Georgia State University provides new insights into the molecular basis of human diseases resulting from mutations in the calcium-sensing receptor, a protein found in cell membranes.
Calcium channels team up to activate excitable cells
Voltage-gated calcium channels open in unison, rather than independently, to allow calcium ions into and activate excitable cells such as neurons and muscle cells, researchers with UC Davis Health System and the University of Washington have found.
A calcium pump caught in the act
Researchers at Aarhus University have described one of the cell's key enzymes, the calcium pump, in its decisive moment -- a so-called transition state.

Related Calcium Reading:

Vitamin K2 and the Calcium Paradox: How a Little-Known Vitamin Could Save Your Life
by Kate Rheaume-Bleue (Author)

The Calcium Lie II: What Your Doctor Still Doesn't Know: How Mineral Imbalances Are Damaging Your Health
by Robert Thompson MD (Author), Kathleen Barnes (Author)

The Calcium Bomb: The Nanobacteria Link to Heart Disease & Cancer
by Douglas Mulhall (Author), Katja Hansen (Author)

The Calcium Factor: The Scientific Secret of Health and Youth
by Robert R. Barefoot (Author), Carl M. Reich (Author)

Death By Calcium (New, First Edition)
by Thomas E., MD, JD Levy (Author)

Calcium Bentonite Clay: Nature’s Pathway to Healing Balance, Detox, Stimulate, Alkalize
by Perry A~ (Author)

Calcium Chloride Recovery in Soda Ash Production by Solvay's Process
by Temesgen Atnafu (Author), Seid Yimer (Author)

Excess Calcium Disease: What you should know about high blood calcium, parathyroid hormone and hyperparathyroidism
by Peter A Galbraith (Author)

Death by Calcium: Proof of the toxic effects of dairy and calcium supplements
by Medfox Publishing

User's Guide to Calcium & Magnesium: Learn What You Need to Know about How These Nutrients Build Strong Bones
by Nan Kathryn Fuchs (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Dying Well
Is there a way to talk about death candidly, without fear ... and even with humor? How can we best prepare for it with those we love? This hour, TED speakers explore the beauty of life ... and death. Guests include lawyer Jason Rosenthal, humorist Emily Levine, banker and travel blogger Michelle Knox, mortician Caitlin Doughty, and entrepreneur Lux Narayan.
Now Playing: Science for the People

#492 Flint Water Crisis
This week we dig into the Flint water crisis: what happened, how it got so bad, what turned the tide, what's still left to do, and the mix of science, politics, and activism that are still needed to finish pulling Flint out of the crisis. We spend the hour with Dr Mona Hanna-Attisha, a physician, scientist, activist, the founder and director of the Pediatric Public Health Initiative, and author of the book "What the Eyes Don't See: A Story of Crisis, Resistance, and Hope in an American City".