Nav: Home

Protein associated with ovarian cancer exacerbates neurodegeneration in Alzheimer's

January 12, 2020

Houston Methodist scientists identified a protein found in ovarian cancer that may contribute to declining brain function and Alzheimer's disease, by combining computational methods and lab research.

"Our finding suggests another known protein may be coming into play here, which could help us identify a new therapeutic target one day," said Stephen T.C. Wong, Ph.D., lead author and Associate Director of Bioinformatics and Biostatistics Cores at Houston Methodist Cancer Center. "These findings may suggest a different role of the protein amyloid beta in neurodegeneration. Many Alzheimer's researchers have focused on amyloid beta alone, or connections between amyloid beta and another protein, tau."

In a study published online in the journal EBiomedicine, Wong and his team at the Ting Tsung and Wei Fong Chao Center for BRAIN of Houston Methodist, reported on a new role of OCIAD1 (ovarian cancer immune-reactive antigen domain containing 1). Originally discovered for its effect on ovarian cancer metastasis and stem cell metabolisms, Wong's group found the OCIAD1 protein in human brain cells--and determined it impairs neurons and damages synapses in the brain, contributing to neurodegeneration in Alzheimer's disease.

"Our research addresses a fundamental question of Alzheimer's disease--how, or if, amyloid beta accumulation that can be seen up to two decades prior to brain function decline is involved in progressive neurodegeneration," said Wong, who is John S Dunn Sr. presidential distinguished chair in biomedical engineering and professor of computer science and bioengineering in oncology at Houston Methodist. "Examining factors that contribute to the progressive decline in people with Alzheimer's will help us develop diagnostic biomarkers and new therapeutics."

The scientists culled through archived bioinformatics data of brain tissue from deceased Alzheimer's patients, as well as mouse models by blending computational methods with laboratory research. They determined that OCIAD1 plays a role in the disease's progressive neurodegeneration by impairing mitochondria function. Known as the powerhouse of cells, damage to mitochondria results in the trickle-down cell death effect in the brain leading to neuron damage.

"We applied a system biology strategy to see if we could find a different mechanism of neurodegeneration in Alzheimer's disease. We identified OCIAD1 as a new neurodegeneration-relevant factor, predicted its function, and demonstrated it mediates the long-term impact of amyloid beta on cells and synaptic damages by impairing mitochondria function," said Xuping Li, Ph.D., co-corresponding author and an instructor in Wong's group.

Alzheimer's research has traditionally focused on a few major themes - the role of the amyloid protein on neuronal loss and how this toxic protein causes injury by interacting with tau. More recently, however, other research considers amyloid beta a bystander and questions whether it causes neuronal degeneration at all.

Wong's group next intends to examine whether OCIAD1 plays a role in the interplay between two known changes in Alzheimer's - amyloid beta and tau aggregates. If so, additional research would focus on the potential of OCIAD1 as a biomarker or therapeutic target.

The epidemic of Alzheimer's, a disease affecting more than 5.8 million Americans, is expected to increase as the aging population lives longer. According to the Alzheimer's Association and the Center for Disease Control and Prevention, Alzheimer's is the most expensive disease in the United States, costing an estimated $290 billion in 2019.
-end-
Other researchers collaborating on this paper include Xuping Li, Lin Wang, Matthew Cykowski, Tiancheng He, Timothy Liu, Joshua Chakranarayan, Andreana Rivera, Hong Zhao and Suzanne Powell (Houston Methodist Hospital and Houston Methodist Research Institute), and Weiming Xia (Boston University School of Medicine and Boston VA Medical Center).

This study was supported in part by grants from the Ting Tsung & Wei Fong Chao Foundation, John S Dunn Research Foundation, Cure Alzheimer's Fund, and the National Institutes of Health (R01AG057635 and R01AG028928).

For more information about Houston Methodist, visit houstonmethodist.org. Follow us on Twitter and Facebook.

For more information: OCIAD1 contributes to neurodegeneration in Alzheimer's disease by inducing mitochondria dysfunction, neuronal vulnerability and synaptic damages. EBioMedicine DOI: https://doi.org/10.1016/j.ebiom.2019.11.030 (online Jan. 13, 2020). Xuping Li, Lin Wang, Matthew Cykowski, Tiancheng He, Timothy Liu, Joshua Chakranarayan, Andreana Rivera, Hong Zhao, Suzanne Powell, Weiming Xia, Stephen T.C. Wong.

Houston Methodist

Related Ovarian Cancer Articles:

Photodynamic therapy used to treat ovarian cancer
Photodynamic therapy (PDT) is one of the most promising methods of treating localized tumors.
Studying the development of ovarian cancer with organoids
Researchers from the group of Hans Clevers at the Hubrecht Institute have modeled the development and progression of high-grade serous ovarian cancer in mini-versions, or organoids, of the female reproductive organs of the mouse.
New class of drugs could treat ovarian cancer
A team of researchers across the University of Manchester have shown that a new class of drugs are able to stop ovarian cancer cells growing.
How to catch ovarian cancer earlier
Ovarian cancer is often diagnosed too late for effective treatment.
New compound could help treat ovarian cancer
Scientists from the University of Sheffield have discovered a compound that could be more effective in treating certain cancers than standard chemotherapy.
Epigenetic markers of ovarian cancer
Insilico Medicine and its collaborators from Johns Hopkins and Insilico Medicine, used an integrated approach by coupling identification of genome-wide expression patterns in multiple cohorts of primary ovarian cancer samples and normal ovarian surface epithelium with innovative computational analysis of gene expression data, leading to the discovery of novel cancer-specific epigenetically silenced genes.
Ovarian cancer statistics, 2018
A new report from the American Cancer Society provides an overview of ovarian cancer occurrence and mortality data.
Ovarian cancer drug shows promise in pancreatic cancer patients with BRCA mutation
A targeted therapy that has shown its power in fighting ovarian cancer in women including those with BRCA1 and BRCA2 mutations may also help patients with aggressive pancreatic cancer who harbor these mutations and have few or no other treatment options.
TGen-led study finds potent anti-cancer drug effect in rare ovarian cancer
An anti-cancer drug used to fight leukemia shows promise against a rare and aggressive type of ovarian cancer -- small cell carcinoma of the ovary hypercalcemic type (SCCOHT) -- which strikes young women and girls, according to a study led by the TGen.
Screening for ovarian cancer not recommended
The US Preventive Services Task Force (USPSTF) recommends against screening for ovarian cancer in women without symptoms and who are not known to be at high risk (such as those who have certain hereditary cancer syndromes that increase the risk for ovarian cancer).
More Ovarian Cancer News and Ovarian Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.