Comprehensive characterization of vascular structure in plants

January 12, 2021

The leaf vasculature of plants plays a key role in transporting solutes from where they are made - for example from the plant cells driving photosynthesis - to where they are stored or used. Sugars and amino acids are transported from the leaves to the roots and the seeds via the conductive pathways of the phloem.

Phloem is the part of the tissue in vascular plants that comprises the sieve elements - where actual translocation takes place - and the companion cells as well as the phloem parenchyma cells. The leaf veins consist of at least seven distinct cell types, with specific roles in transport, metabolism and signalling.

Little is known about the vascular cells in leaves, in particular the phloem parenchyma. Two teams of Alexander von Humboldt professorship students from Düsseldorf and Tübingen, a colleague from Champaign Urbana in Illinois, USA, and a chair of bioinformatics from Düsseldorf have presented the first comprehensive analysis of the vascular cells in the leaves of thale cress (Arabidopsis thaliana) using single cell sequencing.

The team led up by Alexander von Humboldt Professor Dr. Marja Timmermans from Tübingen University was the first to use single cell sequencing in plants to characterise root cells. In collaboration with Prof. Timmermans' group, researchers from the Alexander von Humboldt Professor Dr. Wolf Frommer in Düsseldorf succeeded for the first time in isolating plant cells to create an atlas of all regulatory RNA molecules (the transcriptome) of the leaf vasculature. They were able to define the role of the different cells by analysing the metabolic pathways.

Among other things, the research team proved for the first time that the transcript of sugars (SWEET) and amino acids (UmamiT) transporters are found in the phloem parenchyma cells which transport these compounds from where they are produced to the vascular system. The compounds are subsequently actively imported into the sieve element companion cell complex via the second group of transporters (SUT or AAP) and then exported from the source leaf.

These extensive investigations involved close collaborations with HHU bioinformatics researchers in Prof. Dr. Martin Lercher's working group. Together they were able to determine that phloem parenchyma and companion cells have complementary metabolic pathways and are therefore in a position to control the composition of the phloem sap.

First author and leader of the work group Dr. Ji-Yun Kim from HHU explains: "Our analysis provides completely new insights into the leaf vasculature and the role and relationship of the individual leaf cell types." Institute Head Prof. Frommer adds: "The cooperation between the four working groups made it possible to use new methods to gain insights for the first time into the important cells in plant pathways and to therefore obtain a basis for a better understanding of plant metabolism."
Original publication

Ji-Yun Kim, Efthymia Symeonidi, Tin Yau Pang, Tom Denyer, Diana Weidauer, Margaret Bezrutczyk, Manuel Miras, Nora Zöllner, Thomas Hartwig, Michael M. Wudick, Martin Lercher, Li-Qing Chen, Marja C.P Timmermans & Wolf B. Frommer, Distinct identities of leaf phloem cells revealed by single cell transcriptomics, The Plant Cell, 2021

DOI: 10.1093/plcell/koaa060

Heinrich-Heine University Duesseldorf

Related Amino Acids Articles from Brightsurf:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.

Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.

New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.

Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.

A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.

Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.

New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.

Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.

Read More: Amino Acids News and Amino Acids Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to