Monash University leads breakthrough against antibiotic-resistance

January 12, 2021

A major risk of being hospitalised is catching a bacterial infection.

Hospitals, especially areas including intensive care units and surgical wards, are teeming with bacteria, some of which are resistant to antibiotics - they are infamously known as 'superbugs'.

Superbug infections are difficult and expensive to treat, and can often lead to dire consequences for the patient.

Now, new research published today in the prestigious journal Nature Microbiology has discovered how to revert antibiotic-resistance in one of the most dangerous superbugs.

The strategy involves the use of bacteriophages (also known as 'phages').

"Phages are viruses, but they cannot harm humans," said lead study author Dr Fernando Gordillo Altamirano, from the Monash University School of Biological Sciences.

"They only kill bacteria."

The research team investigated phages that can kill the world's leading superbug, Acinetobacter baumannii, which is responsible for up to 20 per cent of infections in intensive care units.

"We have a large panel of phages that are able to kill antibiotic-resistant A. baumannii," said Dr Jeremy Barr, senior author of the study and Group Leader at the School of Biological Sciences and part of the Centre to Impact AMR.

"But this superbug is smart, and in the same way it becomes resistant to antibiotics, it also quickly becomes resistant to our phages," Dr Barr said.

The study pinpoints how the superbug becomes resistant to attack from phages, and in doing so, the superbug loses its resistance to antibiotics.

"A. baumannii produces a capsule, a viscous and sticky outer layer that protects it and stops the entry of antibiotics," said Dr Gordillo Altamirano.

"Our phages use that same capsule as their port of entry to infect the bacterial cell.

"In an effort to escape from the phages, A. baumannii stops producing its capsule; and that's when we can hit it with the antibiotics it used to resist."

The study showed resensitisation to at least seven different antibiotics.

"This greatly expands the resources to treat A. baumannii infections," Dr Barr said.

"We're making this superbug a lot less scary."

Even though more research is needed before this therapeutic strategy can be applied in the clinic, the prospects are encouraging.

"The phages had excellent effects in experiments using mice, so we're excited to keep working on this approach," said Dr Gordillo Altamirano.

"We're showing that phages and antibiotics can work great as a team."
-end-


Monash University

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.