MicroLED neural probe for neuroscience

January 12, 2021

Overview:

Associate Professor Hiroto Sekiguchi and Ph.D. candidate Hiroki Yasunaga in the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology have developed a MicroLED neural probe for neuroscience. This MicroLED tool can optogenetically control and observe neural activity in the brain. Neural activity was successfully recorded using the neural probe, and sufficient light output was obtained from the MicroLED to activate neural activity. The developed MicroLED tool will contribute to the development of neuroscience research-purposed optogenetic technology.

Details:

A research team in the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology has developed a MicroLED neural probe for neuroscience. This MicroLED tool can optogenetically control and observe neural activity in the brain. The neural activity was successfully recorded using the neural probe, and a light output that is sufficient to activate neural activity is obtained from the MicroLED. This probe will contribute to the development of neuroscience research-purposed optogenetic technology. The results of their research will be published in Japanese Journal of Applied Physics on December 16, 2020.

Advanced information processes are associated with higher brain functions and are the products of complex interactions between interconnected neurons. Optogenetic technology uses light to precisely target specific cells for manipulation without affecting other cells in the brain, which contributes to elucidating how neural activity and animal behaviors are linked. Although an optical fiber has been used as a photodelivery system, there are some issues with high invasion of the brain tissue and complex spatial control.

In the field of engineering, microLEDs, which are 1/10 or 1/100 of the performance of the conventional LED, have been attracting attention towards the realization of the high-brightness, highly efficient, and high resolution display. In this study, we have fabricated a new device that applies this small LED to brain science. The developed epoch-making neural probe tool can solve tasks in conventional neuroscience tools and can control and record the functions of different nerves in a complex area with a high spatiotemporal resolution.

The leader of the research team, Associate Professor Hiroto Sekiguchi, said, "We have been developing LED materials and MicroLED fabrication technology for more than 10 years, and LEDS are being industrialized. I have to find a new field to utilize LED technology. At one point, I met a pharmacy researcher in an encounter unrelated to research, and talked about research in a casual conversation. Half a year later, I received a consultation about this research, which led to the results of this research. I think that the simple and easy-to-understand explanations and the active interest in discussing themes in different fields has led to present research in the area of fusion of pharmacy and engineering."

The research team believes that the developed MicroLED neural probe would be useful as a tool for in vivo optogenetics research. If the mechanism of the brain is elucidated, the findings can be utilized in various fields, such as the establishment of treatment for cancer, psychiatric disorders, and epilepsy, application to brain-machine interface, and development of new algorithms based on brain function.
-end-
Reference:

Hiroki Yasunaga, Toshihiro Takagi, Diasuke Shinko, Yusei Nakayama, Yuichi Takeuchi, Atsushi Nishikawa, Alexander Loesing, Mashiro Ohsawa, and Hiroto Sekiguchi (2021). Development of a neural probe integrated with high-efficiency MicroLEDs for in vivo application, 10.35848/1347-4065/abcffa/meta.

This work was partially supported by the Precursory Research for Embryonic Science and Technology Agency (JPMJPR1885), Research Foundation for OptoScience and Technology, and the Nitto Foundation.

Toyohashi University of Technology (TUT)

Related Neuroscience Articles from Brightsurf:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.

The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.

Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.

Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.

The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.

Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.

Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.

Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.

The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.

Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.

Read More: Neuroscience News and Neuroscience Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.