Study identifies immune response biomarkers, novel pathways in four marine mollusc species

January 12, 2021

Understanding the immune systems of oysters and clams is important in monitoring the effects of pollution and climate change on the health of molluscan species and the potential impacts on the aquaculture industry. Their immune responses also can serve as indicators of changes in ocean environments.

A new study involving the University of Maine assessed immune responses in four economically important marine mollusc species -- the blue mussel, soft-shell clam, Eastern oyster, and Atlantic jackknife clam -- and identified new biomarkers relating to changes in protein function involved in novel regulatory mechanisms of important metabolic and immunological pathways.

The discovery will aid further biomarker identification to benefit the aquaculture industry and provides new understanding of how these pathways function in diverse ways in different animal species.

"These biomarkers reveal how several different physiological functions can be generated from a single protein sequence. This gives added value to an organism's physiology," says Tim Bowden, UMaine associate professor of aquaculture and co-author of the study published as the cover article in the December 2020 issue of the journal Biology.

Bowden, a researcher in UMaine's School of Food and Agriculture and Aquaculture Research Institute, conducted the study with United Kingdom colleagues Igor Kraev of the Open University and Sigrun Lange of the University of Westminster.

Oysters and clams play a critical role in the food chain, representing more than 7% of global marine capture fisheries products in 2018, according to the Food and Agriculture Organization of the United Nations. In the U.S., more than 82% of the 2018 total value for marine aquaculture was derived from clams, mussels and oysters. Understanding molluscan metabolism is a priority based on the role of marine mollusks in global ecosystems and their burgeoning commercial value.

In their study of post-translational protein modification, the researchers found that deimination, or conversion of the amino acid arginine into the nonstandard amino acid citrulline, affects multiple pathways involved in immunity, metabolism and gene regulation.

Deimination is known to play a role in human diseases such as Alzheimer's and Parkinson's.

Study findings suggest that the enzymes that regulate deimination in mammals, birds and reptiles, and bacteria, parasites and fungi also are active in molluscan pathways. Peptidylarginine deiminases, or PADs, which had not previously been reported in Mollusca, may in fact serve as a control switch for varied immune and metabolic pathways in Mollusca and across the phylogenetic tree, according to the research team.

The researchers documented species-specific variations in the size and distribution of extracellular vesicles (EVs) in the bivalves studied. EVs have multiple functions including transporting proteins, genetic cargoes and biomarkers into cells and mediating host-pathogen interactions, among others.

Further investigation of the physiological and immune-related roles of EVs and characterization of the biomarkers they transport is warranted to enhance understanding of regulatory mechanisms and pathways in Mollusca and to support the global aquaculture industry.
-end-


University of Maine

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.