Singing a tumor test song

January 12, 2021

WASHINGTON, January 12, 2021 -- Singing may be the next-generation, noninvasive approach to determining the health of a patient's thyroid.

Typically, a fine needle is used to detect the presence of a tumor in the thyroid, which most commonly affects children and younger women. However, this method can only detect about 5% of thyroid cancers.

Researchers from Université de Tours, Centre Hospitalier Universitaire de Dijon-Bourgogne, and Université Bourgogne Franche-Comté suggest a simpler approach: singing. They demonstrate the technique in the journal Applied Physics Letters, from AIP Publishing.

"Developing noninvasive methods would reduce the stress of patients during their medical exams," said Steve Beuve, one of the authors. "Having to sing during a medical exam can perhaps help release some of the nervous tension even more."

When a person sings, the vibrations from their voice create waves in the tissue near the vocal tract called shear waves. If a tumor is present in the thyroid, the elasticity of its surrounding tissue increases, stiffening, and causing the shear waves to accelerate.

Using ultrasound imaging to measure the speed of these waves, the researchers can determine the elasticity of the thyroid tissue. This method, which the authors call vocal passive elastography, is an extension of passive elastography, a shear wave propagation tracking technique used in seismology.

"The propagation of shear waves gives us information about mechanical properties of soft tissues," Beuve said.

Because the elasticity of biological tissues depends on the speed of the shear waves, by asking a volunteer to sing and maintain an "eeee" sound at 150 hertz, approximately the frequency of D3, the group was able to characterize the thyroid and find any abnormally stiff areas.

A key benefit of V-PE is how quick and easy it is. It requires no specialized or complex equipment added to the ultrasound scanner and only needs about one second of data acquisition to complete. Analyzing the data is the longest step, but a computer program that the team developed does the computation automatically.

The group is working on improving the user friendliness of the computer interface and potentially expanding V-PE to include other areas near the vocal tract, such as the brain.

"We want to cooperate with physicians to propose protocols to verify the relevance of elasticity as a biomarker of pathogens," Beuve said.
-end-
The article "Natural shear wave imaging using vocal tract vibrations: introducing vocal passive elastography (V-PE) to thyroid elasticity mapping" is authored by Steve Beuve, Samuel Callé, Elise Khoury, Emmanuel Simon, and Jean Pierre Remenieras. The article will appear in Applied Physics Letters on Jan. 12, 2021 (DOI: 10.1063/5.0031169). After that date, it can be accessed at
https://aip.scitation.org/doi/full/10.1063/5.0031169.

ABOUT THE JOURNAL

Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See https://aip.scitation.org/journal/apl.

American Institute of Physics

Related Tumor Articles from Brightsurf:

New cancer diagnostics: A glimpse into the tumor in 3D
A new technique could initiate a revolution in pathology: Tumor tissue is made transparent and illuminated with a special ultramicroscope.

Tumor progression depends on the tumor microenvironment
Researchers from Tokyo Medical and Dental University (TMDU) and Niigata University identified a novel mechanism by which tumors progress.

How do tumor cells divide in the crowd?
Scientists led by Dr. Elisabeth Fischer-Friedrich, group leader at the Excellence Cluster Physics of Life (PoL) and the Biotechnology Center TU Dresden (BIOTEC) studied how cancer cells are able to divide in a crowded tumor tissue and connected it to the hallmark of cancer progression and metastasis, the epithelial-mesenchymal transition (EMT).

Finding a way to STING tumor growth
The immune protein STING has long been noted for helping protect against viruses and tumors by signaling a well-known immune molecule.

Assembly within the tumor center
Number of macrophages in tumor tissue enables prognosis of lung tumor progression.

Mirror image tumor treatment
Our immune system ought to be able to recognize and kill tumor cells.

Traces of immortality in tumor DNA
To gain an infinite lifespan, cancer cells need to maintain the ends of their chromosomes, known as telomeres.

Peering into the genome of brain tumor
Scientists at Osaka University have created a machine learning method for classifying the mutations of glioma brain tumors based on MR images alone.

Glutamine-blocking drug slows tumor growth and strengthens anti-tumor response
A compound developed by Johns Hopkins researchers that blocks glutamine metabolism can slow tumor growth, alter the tumor microenvironment and promote the production of durable and highly active anti-tumor T cells.

Cancer genes and the tumor milieu
In a recent study published in Cancer Research, researchers demonstrate the role of an oncogene in altering the immediate environment of tumors.

Read More: Tumor News and Tumor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.