Enhanced oral uptake of exosomes opens cell therapy alternative

January 12, 2021

LOS ANGELES (Jan. 11, 2021) -- Cell-derived exosomes are effective in treating disease when mixed with the dominant protein in breast milk and given orally, a new Smidt Heart Institute study of laboratory mice shows. The findings, published in the peer-reviewed Journal of Extracellular Vesicles, could help develop new oral medications for treating patients with muscular dystrophy and heart failure.

The study builds on more than a decade of research led by Eduardo Marbán, MD, PhD, executive director of the Smidt Heart Institute and Cedars-Sinai professor of Cardiology. The research has focused on human cardiosphere-derived cells (CDCs) and a type of extracellular vesicle, called an exosome, that is secreted by those cells and travels throughout the body. Exosomes contain various biomolecules.

"When we started our first human trial in 2009, we were injecting the cells into the hearts of patients, and we thought the cells themselves were the therapeutic answer," Marbán said. "Now, we know it's really the exosomes that do the heavy lifting, and our recent work shows that they could be just as effective when administered orally."

Since that first study concluded in 2010, Marbán has led several studies that have each produced new insights and new methods of delivering the cells to patients and an expansion of the type of patients the cells could potentially help.

The first studies led by Marbán involved patients with heart disease and clogged arteries. After a parent of a muscular dystrophy patient asked Marbán if CDCs might help muscular dystrophy patients who experience progressive muscle weakness - including weakness of the heart muscle - and loss of muscle mass, Marbán began additional research projects aimed at developing treatments for muscular dystrophy patients.

"The work by Dr. Marban and his team highlight the ingenuity our investigators bring to addressing human disease," said Jeffrey A. Golden, MD, Cedars-Sinai's Vice Dean for Research and Graduate Education. "By building on his efforts to develop novel therapeutics for cardiovascular disease, he has found an exciting and novel path to treating another challenging clinical disorder, muscular dystrophy, and in so doing provided the groundwork to expand this strategy to other disorders."

Muscular dystrophy is a group of diseases caused by abnormal genes (mutations) that interfere with the production of proteins needed to form and maintain healthy muscle - including the heart muscle.

In the most recent study, exosomes secreted by CDCs were mixed with casein, the major protein found in the milk of most mammals. The casein-coated exosomes were then fed to laboratory mice that had muscular dystrophy.

Casein is the basis of cheese and often is an ingredient in food products. Decades of medical research have shown that babies who are breastfed might have reduced risk for certain allergic diseases, asthma, obesity and Type 2 diabetes. Casein-rich breast milk, which contains many natural exosomes, also may help improve an infant's cognitive development.

In this study, laboratory mice with muscular dystrophy were organized into four groups. One group of lab mice was fed CDC-derived exosomes mixed with casein, a second group received the exosomes without casein, a third group received casein only, and a fourth group received food with no added exosomes or casein. Those four groups were compared against a control group of lab mice that did not have muscular dystrophy.

Results showed that the mice with muscular dystrophy who were fed the CDC-derived exosomes experienced improved heart function as well as improved mobility and exercise capacity and that giving the exosomes orally distributed them throughout the body. The effects were enhanced by mixing the exosomes with casein.

"Especially for the patient population we are now targeting, patients with muscular dystrophy, the results are promising," Marbán said. "If we can prolong the amount of time before muscular dystrophy patients have to use a wheelchair, that would be a huge quality-of-life improvement."

Cedars-Sinai Medical Center

Related Muscular Dystrophy Articles from Brightsurf:

Using CRISPR to find muscular dystrophy treatments
A study from Boston Children's Hospital used CRISPR-Cas9 to better understand facioscapulohumeral muscular dystrophy (FSHD) and explore potential treatments by systematically deleting every gene in the genome.

Duchenne muscular dystrophy diagnosis improved by simple accelerometers
Testing for Duchenne muscular dystrophy can require specialized equipment, invasive procedures and high expense, but measuring changes in muscle function and identifying compensatory walking gait could lead to earlier detection.

New therapy targets cause of adult-onset muscular dystrophy
The compound designed at Scripps Research, called Cugamycin, works by recognizing toxic RNA repeats and destroying the garbled gene transcript.

Gene therapy cassettes improved for muscular dystrophy
Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance.

Discovery points to innovative new way to treat Duchenne muscular dystrophy
Researchers at The Ottawa Hospital and the University of Ottawa have discovered a new way to treat the loss of muscle function caused by Duchenne muscular dystrophy in animal models of the disease.

Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy
Massachusetts General Hospital researchers have found that extracellular RNA in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about whether therapeutic drugs are having the desired effects on a molecular level.

Tamoxifen and raloxifene slow down the progression of muscular dystrophy
Steroids are currently the only available treatment to reduce the repetitive cycles of inflammation and disease progression associated with functional deterioration in patients with muscular dystrophy (MD).

Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.

Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.

GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.

Read More: Muscular Dystrophy News and Muscular Dystrophy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.