Gene-disabling techniques simplified by Stanford team

January 13, 2004

STANFORD, Calif. - Sometimes the first step to learning a gene's role is to disable it and see what happens. Now researchers at the Stanford University School of Medicine have devised a new way of halting gene expression that is both fast and cheap enough to make the technique practical for widespread use. This work will accelerate efforts to find genes that are involved in cancer and the fate of stem cells, or to find genes that make good targets for therapeutic drugs.

The technique, published in the February issue of Nature Genetics and now available online, takes advantage of small molecules called short interfering RNA, or siRNA, which derail the process of translating genes into proteins. Until now, these molecular newcomers in genetics research have been difficult and expensive to produce. Additionally, they could impede the activity of known genes only, leaving a swath of genes in the genetic hinterlands unavailable for study.

"siRNA technology is incredibly useful but it has been limited by expense and labor. A better method for generating siRNA has been needed for the whole field to move forward," said study leader Helen Blau, PhD, the Donald E. and Delia B. Baxter Professor of Pharmacology. She said some companies are in the process of creating pools, or libraries, of siRNA molecules for all known genes in specific organisms but these libraries aren't yet available.

Pathology graduate students George Sen, Tom Wehrman and Jason Myers became interested in creating siRNA molecules as a way of screening for genes that alter the fate of stem cells - cells that are capable of self-renewal and the primary interest of Blau's lab. The students hoped to block protein production for each gene to find out which ones play a critical role in normal stem cell function.

"I told them that creating individual siRNAs to each gene was too expensive," said Blau. Undaunted, the students came up with a protocol for making an siRNA library to obstruct expression of all genes in a given cell - including genes that were previously uncharacterized. They could then pull individual molecules like books from a shelf to test each one for a biological effect.

The team had several hurdles to overcome in developing their protocol. The first was a size limit - an siRNA molecule longer than 29 subunits causes wide-ranging problems in the cell. The key to overcoming this barrier was a newly available enzyme that snips potential siRNA molecules into 21-subunit lengths. A further step copied these short snippets into a form that could be inserted into a DNA circle called a plasmid. When the researchers put a single plasmid into a cell, it began churning out the gene-blocking siRNA molecule.

The group tested their approach by creating a handful of siRNA molecules to genetically disable three known genes. In each case, their technique generated siRNA that effectively blocked the gene in question. Wehrman said this technique of creating siRNA molecule libraries could be widely used to find genes that, when disabled, cause cells to become cancerous or alter how the cells respond to different drugs. These genes could then become potential targets for drugs to treat disease.

A paper in the same issue of Nature Genetics described a similar way of creating siRNA libraries. "Having two unrelated groups working on the same problem shows there has been a real need for the technology," Blau said. The Stanford group has filed a patent for its technique.
-end-
Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at 650-723-3900 (amyadams@stanford.edu).
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu).

Stanford University Medical Center

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.