When continents formed

January 13, 2011

The continental crust is the principal record of conditions on the Earth for the last 4.4 billion years. Its formation modified the composition of the mantle and the atmosphere, it supports life, and it remains a sink for carbon dioxide through weathering and erosion. The continental crust therefore has had a key role in the evolution of the Earth, and yet the timing of its generation remains the topic of considerable debate.

It is widely believed that the juvenile continental crust has grown from the depleted upper mantle. One common way to assess when new crust was formed is to determine the radiogenic isotope composition of any crustal sample, and to compare its isotope signature with that of the depleted mantle. In other words, radiogenic isotopes can be used to calculate 'model ages' of crust formation, which represent the time since a crustal sample was separated from its mantle source.

The concept of 'model age' has been widely used in crustal evolution studies for the last three decades. However it is increasingly clear that using the isotope composition of the depleted mantle as a reference for the calculation of model ages of continental crust generation can lead to incomplete interpretations.

In a paper published today in Science, Dr Bruno Dhuime of Bristol's School of Earth Sciences and colleagues describe a new methodology for the calculation of model ages, based on the isotope composition of the average new continental crust.

Dr Dhuime said: "Ages calculated this way are significantly younger than model ages calculated from the isotope composition of the depleted mantle. New ages obtained are more consistent with the geological record, which opens new perspectives in crustal evolution studies based on radiogenic isotopes."
-end-


University of Bristol

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.