Developing methods for building precise nanostructures

January 13, 2014

Researchers at Case Western Reserve University have received a $540,000 federal grant to devise methods for building minute structures tailored to precisely deliver medicines to tumors or carry dyes that help imaging technologies detect disease, create more efficient nanowires and nanoelectonics, and more.

Building precisely defined structures on the nanoscale has proven a challenge for chemists. To provide control and precision, the researchers propose to build complex polymer nanostructures on scaffolds made of plant viruses, tiny organisms that infect plant cells but are benign outside the plant.

Jon Pokorski, assistant professor of macromolecular science and engineering, and Nicole Steinmetz, assistant professor of biomedical engineering, will use the three-year grant from the National Science Foundation's Macromolecular, Supramolecular and Nanochemistry Program to test three methods of synthesizing rod-shaped nanostructures.

Typically, scientists build nanopolymers from small polymer chains that self-assemble and are used to make films, supercrystals and drug delivery devices. But there are always imperfections in the assembly.

"By using a template--the virus--we can produce an evenly dispersed polymer coating that yields more consistent and efficient properties," Pokorski said. "And this is very modular; it can be applied to lots of uses."

By controlling the size and surface features, they hope to reduce or eliminate the toxic side effects that can be caused by those two properties during drug delivery, he said.

Steinmetz, an appointee of the Case Western Reserve School of Medicine, will build the templates using tobacco mosaic virus. Instead of making spheres, the goal is to make materials that are considerably longer than they are wide, called "high-aspect" materials.

"The physical property makes them more useful for nanowires and electronics and applications in the body," she said.

The tobacco virus particles are about 300 nanometers by 18 nanometers, but Steinmetz will control sizes using genetic engineering, "which gives us more control than we could have using purely chemical production methods," she said.

Pokorski will add polymers. The rod shape allows a polymer with one function--such as carrying medicine--to be tied to one end, and another with a different function--such as carrying an imaging dye--to the other.

"Or," he explained, "we can grow one polymer on the exterior and a different polymer on the interior because the plant virus is a hollow tube."

In addition to using nanoparticles as vehicles to carry medicines to specific targets, they could be used as electrical connectors, replacing carbon nanotubes used to link nanoelectronics.
-end-
Pokorski did his foundational work for the grant in the Center for Layered Polymeric Systems in the case School of Engineering; Steinmetz at the Case Center for Imaging Research.

Case Western Reserve University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.