Viewing macro behaviors of ultra-cold quantum gases through the micro-world

January 13, 2014

Understanding collective behavior of ultra-cold quantum gases is of great interest since it is intimately related to many encountered systems in nature such as human behavior, swarms of birds, traffic jam, sand dunes, neutron stars, fundamental magnetic properties of solids, or even super-fluidity or super-conductivity. In all of these everyday life examples, collective behavior plays a crucial role since all participating objects move, voluntarily or not, synchronously.

In a recent study coordinated by the Institute of Laser Physics, University of Hamburg - Germany, in collaboration with ICFO - the Institute of Photonic Sciences, researchers have observed, for the first time, the collective spin dynamics of ultra-cold fermions by analyzing the microscopic properties of the particles through their local collisions. The researchers were able to observe that at very low temperatures, close to absolute zero, the individual properties of each particle team up and behave coherently as a single identity in spin space. The results obtained from this study have recently been published in Science.

The "super" behavior of matter is actually a macro manifestation of the micro-laws of quantum mechanics. In the quantum micro-world, particles are divided into two main groups: bosons (e.g. photons) and fermions (e.g. constituents of matter such as electrons, protons, neutrons). The difference between these particles is basically their spin: bosons have integer spins and fermions have half-integer spins. Bosons behave collectively in spin rotation since they like to bundle up as friends and go with the flow. In the case of fermions, scientists did not know, up to now, whether these particles could behave the same way since they apparently are loners in this world.

Even more, if an atomic gas is cooled down to extremely low temperatures, bosons present the characteristics that many of them can occupy the same quantum state - they constitute a Bose condensate. In contrast, fermions have the particular characteristic of having only one particle per single state occupied, according to Pauli's exclusion principle.

To obtain ultra-cold fermions, the researchers trapped, via the use of a laser light, a quantum degenerate gas containing potassium atoms, cooled it down to very low temperatures and prepared different spin mixtures at very low magnetic fields to induce spin-changing dynamics. They were able to observe that when particles with very high spins collide between each other in local interactions, the resulting individual spins change. However, as a whole, they behave in a collective manner stabilizing the gas through long-lived, large-amplitude spin oscillations.

Hence, the research group led by ICREA Professor at ICFO Dr. Maciej Lewenstein came up with a novel effective theory that could explain correctly the experiment and discovered that the collective behavior is a quantum phenomenon which is very sensitive to perturbations (e.g. the effect completely disappears with a very slight change in the temperature). As Maciej Lewenstein states, "Fermions, due to Pauli's principle, are "individualists" - they do not like to behave in a same way. Nevertheless, here they team up to exhibit amazingly robust collective behavior. "

Through the controlled interplay of different fundamental processes that either stimulate or suppress the collective behavior, scientists are being able to have an in-depth understanding of the model system at work and therefore seek new pathways to study yet inaccessible exotic phenomena such as the creation of topological structures and textures in degenerate quantum gases with high spin or future applications such as quantum sensors for the smallest magnetic fields possible.
-end-
Reference: J. S. Krauser, U. Ebling, N. Fläschner, J. Heinze, K. Sengstock, M. Lewenstein, A. Eckardt, C. Becker, Giant Spin Oscillations in an Ultracold Fermi Sea, Science 10 January 2014: Vol. 343 no. 6167 pp. 157-160, DOI: 10.1126/science.1244059

About ICFO

ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia as a center of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists and technologists, and provide knowledge and technology transfer. In recognition of research excellence, ICFO was granted the Severo Ochoa accreditation by the Ministry of Science and Innovation.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The center currently hosts 300 professionals including researchers and PhD students, working in 60 laboratories. All research groups and facilities are located in a dedicated 14.000 m2 building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

Researchers at ICFO publish in the most prestigious journals and collaborate with a wide range of companies around the world. The Client Liaison Program at ICFO, which includes members of a large number of local and international companies, aims to create synergies between ICFO and the industrial sector. The institute actively promotes the creation of spin-off companies by ICFO researchers. The institute participates in a large number of projects and international networks of excellence. Foundation Cellex finances the NEST program at ICFO which makes possible many ambitious frontier research projects.

ICFO-The Institute of Photonic Sciences

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.