Keeping stem cells pluripotent

January 13, 2014

While the ability of human embryonic stem cells (hESCs) to become any type of mature cell, from neuron to heart to skin and bone, is indisputably crucial to human development, no less important is the mechanism needed to maintain hESCs in their pluripotent state until such change is required.

In a paper published in this week's Online Early Edition of PNAS, researchers from the University of California, San Diego School of Medicine identify a key gene receptor and signaling pathway essential to doing just that - maintaining hESCs in an undifferentiated state.

The finding sheds new light upon the fundamental biology of hESCs - with their huge potential as a diverse therapeutic tool - but also suggests a new target for attacking cancer stem cells, which likely rely upon the same receptor and pathway to help spur their rampant, unwanted growth.

The research, led by principal investigator Karl Willert, PhD, assistant professor in the Department of Cellular and Molecular Medicine, focuses upon the role of the highly conserved WNT signaling pathway, a large family of genes long recognized as a critical regulator of stem cell self-renewal, and a particular encoded receptor known as frizzled family receptor 7 or FZD7.

"WNT signaling through FZD7 is necessary to maintain hESCs in an undifferentiated state," said Willert. "If we block FZD7 function, thus interfering with the WNT pathway, hESCs exit their undifferentiated and pluripotent state."

The researchers proved this by using an antibody-like protein that binds to FZD7, hindering its function. "Once FZD7 function is blocked with this FZD7-specific compound, hESCs are no longer able to receive the WNT signal essential to maintaining their undifferentiated state."

FZD7 is a so-called "onco-fetal protein," expressed only during embryonic development and by certain human tumors. Other studies have suggested that FZD7 may be a marker for cancer stem cells and play an important role in promoting tumor growth. If so, said Willert, disrupting FZD7 function in cancer cells is likely to interfere with their development and growth just as it does in hESCs.

Willert and colleagues, including co-author Dennis Carson, MD, of the Sanford Consortium for Regenerative Medicine and professor emeritus at UC San Diego, plan to further test their FZD7-blocking compound as a potential cancer treatment.
-end-
Co-authors include Ian J. Huggins, Luca Perna and David Brafman, Department of Cellular and Molecular Medicine, UCSD; Desheng Lu and Shiyin Yao, UC San Diego Moores Cancer Center; and Terry Gaasterland, Scripps Institution of Oceanography and Institute for Genomic Medicine, UCSD.

Funding support for this research came, in part, from the California Institute for Regenerative Medicine and the UC San Diego Stem Cell Program.

University of California - San Diego

Related Cancer Stem Cells Articles from Brightsurf:

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

On the trail of cancer stem cells
What goes on inside and between individual cells during the very earliest stages of tumor development?

Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.

Discovery: New biomarker for cancer stem cells
A University of Houston College of Pharmacy associate professor has discovered a new biomarker in cancer stem cells that govern cancer survival and spread, and it's raising hope that drug discovery to kill cancer stem cells could follow suit.

NUS researchers show potential liver cancer treatment by targeting cancer stem-like cells
NUS researchers from the Cancer Science Institute of Singapore and the N.1 Institute for Health have shown the potential use of small molecule inhibitors to treat advanced liver cancer.

Killing the seeds of cancer: A new finding shows potential in destroying cancer stem cells
When doctors remove a tumor surgically or use targeted therapies, the cancer may appear to be gone.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.

How targeting metabolism can defeat cancer stem cells
Researchers have found that cancer stem cells exist in more than one state and can change form, sliding back and forth between a dormant state and a rapidly growing state.

In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.

Read More: Cancer Stem Cells News and Cancer Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.