Building 'belt' offers cheap, quick repair of earthquake damage

January 13, 2014

Four years after the January 2010 earthquake, 145,000 people still remain homeless in Haiti. A cheap and simple technology to repair earthquake damaged buildings - developed at the University of Sheffield - could help to reduce these delays by quickly making buildings safe and habitable.

Recent tests showed that a damaged building repaired using the technique could withstand a major earthquake - similar in scale and proximity to the buildings that collapsed during the Haiti earthquake.

The technology involves wrapping metal straps around each floor of the building, which are then tensioned either by hand or using compressed air tools. It is designed for use on reinforced concrete frame buildings - a common construction technique around the world, including countries like Haiti. Unlike other repair methods, it does not require expensive materials or a high level of technical knowledge, making it ideal for use in the developing world.

Lead researcher, Professor Kypros Pilakoutas, explains: "The strapping works very much like a weight-lifter's belt, by keeping everything tightly compressed to reduce tension on the concrete columns of the structure.

Concrete works well under compression, but not when pulled under tension and this is why it has to be reinforced for use in construction. When the reinforcement is faulty or damaged, it can be very expensive to repair.

"Our method not only makes the building stable again very quickly, but it increases the building's ability to deform without breaking, making it more able to withstand further earthquake movement."

The team tested the technique on a full scale, two-storey building, built according to an old European standard which has inadequate reinforcing to withstand earthquakes. This construction is typical of many buildings in the developing world, as well as many Mediterranean buildings built before the 1980s.

The building was constructed on a specially designed 'shaking table' which can simulate ground movement caused by earthquakes. During the first test, the building was very near collapse following a small earthquake similar in scale to a magnitude 4 on the Richter scale having about 10000 times less energy than the Haiti earthquake.

The building was then repaired using the post-tensioned metal straps and retested. The researchers were unable to make the building fail during a major earthquake similar in scale to the magnitude 7 Haiti earthquake at the epicentre and stopped the test at that point.

Professor Pilakoutas hopes the new technology will not only speed up the response to major earthquakes, but could also prevent the damage happening in the first place. The cost of the materials for a typical small building column is about £20 and it would take a crew of two people around 2 hours to complete the strengthening. For a typical small dwelling having 6 columns, the seismic rehabilitation would cost around £200 and could be completed in a few days, rather than cost several thousand pounds and take months with other traditional rehabilitation techniques such as jacketing with steel plates or concrete.

"Ideally, governments shouldn't wait until a disaster happens, but should be identifying buildings at risk and taking steps to make them strong enough to withstand any future earthquakes," he says. "Because this method causes minimal disruption and is cheap to apply, it's ideal for bringing existing buildings up to standard - both in the developing world and in earthquake risk areas in Europe as well."
-end-
The research - funded through the European Union - is a collaboration between researchers from the UK, France, Cyprus, Turkey, Romania, Spain and the USA. The results from the shaking table tests are published in the Journal of Earthquake Engineering. Ends

VIDEO: the repaired building withstanding movement similar to a magnitude 7 earthquake: http://www.youtube.com/watch?v=O5k0plEly30&feature=youtu.be

University of Sheffield

Related Earthquake Articles from Brightsurf:

Healthcare's earthquake: Lessons from COVID-19
Leaders and clinician researchers from Beth Israel Lahey Health propose using complexity science to identify strategies that healthcare organizations can use to respond better to the ongoing pandemic and to anticipate future challenges to healthcare delivery.

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.

Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.

New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.

Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.

Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.

Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.

Read More: Earthquake News and Earthquake Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.