Nav: Home

Immigrants play increasing role in US science and engineering workforce

January 13, 2016

From 2003 to 2013, the number of scientists and engineers residing in the United States rose from 21.6 million to 29 million. This 10-year increase included significant growth in the number of immigrant scientists and engineers, from 3.4 million to 5.2 million.

Immigrants went from making up 16 percent of the science and engineering workforce to 18 percent, according to a report from the National Science Foundation's National Center for Science and Engineering Statistics (NCSES). In 2013, the latest year for which numbers are available, 63 percent of U.S. immigrant scientists and engineers were naturalized citizens, while 22 percent were permanent residents and 15 percent were temporary visa holders.

Of the immigrant scientists and engineers in the United States in 2013:
  • 57 percent were born in Asia.
  • 20 percent were born in North America (excluding the United States), Central America, the Caribbean, or South America.
  • 16 percent were born in Europe.
  • 6 percent were born in Africa.
  • And less than 1 percent were born in Oceania.
Among Asian countries, India continued its trend of being the top country of birth for immigrant scientists and engineers, with 950,000 out of Asia's total 2.96 million. India's 2013 figure represented an 85 percent increase from 2003.

Also since 2003, the number of scientists and engineers from the Philippines increased 53 percent and the number from China, including Hong Kong and Macau, increased 34 percent.

The NCSES report found that immigrant scientists and engineers were more likely to have earned post-baccalaureate degrees than their U.S.-born counterparts. In 2013, 32 percent of immigrant scientists reported their highest degree was a master's (compared to 29 percent of U.S.-born counterparts) and 9 percent reported it was a doctorate (compared to 4 percent of U.S.-born counterparts). The most common fields of study for immigrant scientist and engineers in 2013 were engineering, computer and mathematical sciences and social and related sciences.

Over 80 percent of immigrant scientists and engineers were employed in 2013, the same percentage as their U.S.-born counterparts. Among the immigrants in the science and engineering workforce, the largest share (18 percent) worked in computer and mathematical sciences, while the second-largest share (8 percent) worked in engineering. Three occupations -- life scientist, computer and mathematics scientist and social and related scientist -- saw substantial immigrant employment growth from 2003 to 2013.
-end-
-NSF-

National Science Foundation

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.