Nav: Home

Adaptive management of soil conservation is essential to improving water quality

January 13, 2017

The quality of our rivers and lakes could be placed under pressure from harmful levels of soluble phosphorus, despite well-intended measures to reduce soil erosion and better manage and conserve farmland for crop production, a new study shows.

The UK-based Centre for Ecology & Hydrology (CEH) led a team of international scientists, who found that increased levels of soluble phosphorus in rivers entering Lake Erie, in the USA, may be linked to conservation measures, despite their success in reducing soil erosion and nutrient losses in particulate forms.

The study shows that since the early 2000s, there has been an increased rate of soluble phosphorus inputs from rivers entering the Western Lake Erie Basin - which has been linked to the increasing extent and severity of harmful algal blooms.

Phosphorus is an essential nutrient for crop production and for terrestrial and freshwater ecosystems. But elevated levels of soluble phosphorus can cause proliferation of algae that produce toxins which can be harmful to fish, other animals and plant life in lakes, rivers and streams. The harmful algae can also impair water that is treated for human consumption.

Lead author Professor Helen Jarvie, a Principal Scientist in Water Quality at the Centre for Ecology & Hydrology, said, "We accounted for changing weather and rainfall patterns, and found increases in river flows alone contributed about one third of the marked increase in soluble phosphorus entering Lake Erie since 2002, despite reductions in fertilizer use and amounts of phosphorus stored in soil. The remaining two thirds must arise from other changes within the watershed."

"We noted that, over time, conservation tillage - where fields are not ploughed, and crop residues remain on the fields before and after planting the next crop, to reduce soil erosion and runoff - has continued an increased trend of adoption since the mid-1980s. It is plausible that the transition from conventional to conservation tillage, along with less incorporation into the soil of broadcast phosphorus fertilizer applications, may have inadvertently caused accumulation of highly-soluble phosphorus at the soil surface.

"This can increase losses of soluble phosphorus during rainfall-induced runoff events, and may also have been compounded by installation of subsurface drainage, which can rapidly transmit the soluble phosphorus from fields to rivers."

She added "These research findings have important implications far beyond the Lake Erie Basin, because conservation tillage is widely recommended as a beneficial management practice for reducing erosion and nutrient losses from cropland in the UK and across Europe and North America."

During the 1980s and 1990s, there were major water-quality improvements in Lake Erie, as a result of the Clean Water Act regulating sewage effluent inputs, improved fertilizer management, and conservation measures, which reduced soil erosion and losses of particulate phosphorus attached to soil particles.

However, in the last 15 years, there has been a decline in water quality, with increases in algal blooms in the Western Basin, linked to the rise in the more ecologically-damaging soluble form of phosphorus. In 2014, a toxic algal bloom in the Western Lake Erie Basin led to a "do not drink" advisory for more than 400,000 people in the city of Toledo, Ohio.

Consequently in 2016, the US and Canadian governments set a new target of reducing levels of phosphorus entering Lake Erie by 40 percent.

Co-author Professor Andrew Sharpley, Professor of Soils and Water Quality at the University of Arkansas, said, "The main lesson learnt is that there can be unintended consequences of changing farm conservation practices, which should be recognized.

"Effective conservation is an adaptive process. In the case of Lake Erie catchments, reduced land tillage dramatically reduced erosion, but without changing fertilizer management practices, this effectively trapped phosphorus at the soil surface.

"There was an eventual transition from soil being a sink for phosphorus to become a source to drainage waters. The implications of this research resonate beyond the Lake Erie Basin and are important to transferring science to the long term benefits of conservation management."

The findings were based on Heidelberg University's 40-year record of daily river-water chemistry for the major rivers draining into the Western Lake Erie basin, and demonstrate the global need for long-term water-quality monitoring to detect change so we can adaptively manage our water resources to ensure their long-term quality and security.

The report published in the Journal of Environmental Quality calls for soil and water quality management approaches which tackle both soluble and particulate phosphorus losses from farmland, and highlights that additional conservation measures will be needed to address the soluble phosphorus component.

The research was funded by the Natural Environment Research Council and was conducted in partnership with the University of Arkansas, Heidelberg University in Tiffin, Ohio, the US Department of Agriculture, and the International Plant Nutrition Institute.
-end-
Notes to editors

Contact details

For interview requests and images contact Wayne Coles, Media Relations Officer, Centre for Ecology & Hydrology, UK, Mobile: +44 (0)7920 2955384, Email: wcoles@ceh.ac.uk

Lead author, Professor Helen Jarvie, Principal Scientist, Water Quality, Centre for Ecology & Hydrology, UK, Office: +44 (0)7920 2955384, Email: hpj@ceh.ac.uk

Co-author, Professor Andrew N. Sharpley, Professor of Soils and Water Quality, University of Arkansas, USA, Office: +001 479-575-5721, Email: sharpley@uark.edu

Images

Photographs of farmland in the Western Lake Erie catchment, the Sandusky River and an algal bloom in the Western Lake Erie Basin are available by contacting CEH
Media Relations Officer Wayne Coles.

Paper reference

Helen P. Jarvie, Laura T. Johnson, Andrew N. Sharpley, Douglas R. Smith, David B. Baker, Tom W. Bruulsema and Remegio Confesor, 2017, 'Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?' Journal of Environmental Quality. Doi: 10.2134/jeq2016.07.0248

The paper is available as an open access document via this URL: https://dl.sciencesocieties.org/publications/jeq/abstracts/46/1/123

The Centre for Ecology & Hydrology (CEH) http://www.ceh.ac.uk is the UK's Centre of Excellence for integrated research in the land and freshwater ecosystems and their interaction with the atmosphere. CEH is part of the Natural Environment Research Council, employs more than 450 people at four major sites in England, Scotland and Wales, hosts over 150 PhD students, and has an overall budget of about £35m. CEH tackles complex environmental challenges to deliver practicable solutions so that future generations can benefit from a rich and healthy environment. You can follow the latest developments in CEH research via @CEHScienceNews on Twitter

Centre for Ecology & Hydrology

Related Water Quality Articles:

Study quantifies effect of 'legacy phosphorus' in reduced water quality
For decades, phosphorous has accumulated in Wisconsin soils. Though farmers have taken steps to reduce the quantity of the agricultural nutrient applied to and running off their fields, a new study from the University of Wisconsin-Madison reveals that a 'legacy' of abundant soil phosphorus in the Yahara watershed of Southern Wisconsin has a large, direct and long-lasting impact on water quality.
New standards for better water quality in Europe
The European Water Framework Directive (WFD) is due to be revised by 2019.
Investigating the impact of 'legacy sediments' on water quality
University of Delaware researcher Shreeram Inamdar has been awarded a $499,500 grant from the US Department of Agriculture (USDA) to determine if stream-bank legacy sediments are significant sources of nutrients to surface waters and how they may influence microbial processes and nutrient cycling in aquatic ecosystems.
Adaptive management of soil conservation is essential to improving water quality
The quality of our rivers and lakes could be placed under pressure from harmful levels of soluble phosphorus, despite well-intended measures to reduce soil erosion and better manage and conserve farmland for crop production, a new study shows.
Big data approach to water quality applied at shale drilling sites
A computer program is diving deep into water quality data from Pennsylvania, helping scientists detect potential environmental impacts of Marcellus Shale gas drilling.
UTA partners with Apache Corp. for baseline water quality study in Alpine High area
Chemists from the University of Texas at Arlington have partnered with Apache Corporation to conduct a baseline water quality study of groundwater and surface water in the newly discovered Alpine High resource play in West Texas.
Cleaner air may be driving water quality in Chesapeake Bay
A new study suggests that improvements in air quality over the Potomac watershed, including the Washington, D.C., metro area, may be responsible for recent progress on water quality in the Chesapeake Bay.
New water-quality data on impact of corn, soybeans on nitrate in Iowa streams
As Iowa farmers have planted more acres of corn to meet the demand driven by the corn-based ethanol industry, many models predicted that nitrate concentrations in Iowa streams would increase accordingly.
Illinois River water quality improvement linked to more efficient corn production
In a new University of Illinois study, nitrate concentrations and loads in the Illinois River from 1983 to 2014 were correlated with agricultural nitrogen use efficiency and nitrate discharged from Chicago's treated wastewater.
Harmful algal blooms and water quality
Harmful algal blooms (HABs) occur naturally, but their outbreaks are influenced by climate change and droughts, nutrient enrichment and manmade factors, such as contaminants from sewage and stormwater discharge, natural resource extraction or agricultural runoff, to name a few.

Related Water Quality Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...