Nav: Home

How the darkness and the cold killed the dinosaurs

January 13, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists now reconstructed how tiny droplets of sulfuric acid formed high up in the air after the well-known impact of a large asteroid and blocking the sunlight for several years, had a profound influence on life on Earth. Plants died, and death spread through the food web. Previous theories focused on the shorter-lived dust ejected by the impact. The new computer simulations show that the droplets resulted in long-lasting cooling, a likely contributor to the death of land-living dinosaurs. An additional kill mechanism might have been a vigorous mixing of the oceans, caused by the surface cooling, severely disturbing marine ecosystems.

"The big chill following the impact of the asteroid that formed the Chicxulub crater in Mexico is a turning point in Earth history," says Julia Brugger from the Potsdam Institute for Climate Impact Research (PIK), lead author of the study to be published today in the Geophysical Research Letters. "We can now contribute new insights for understanding the much debated ultimate cause for the demise of the dinosaurs at the end of the Cretaceous era." To investigate the phenomenon, the scientists for the first time used a specific kind of computer simulation normally applied in different contexts, a climate model coupling atmosphere, ocean and sea ice. They build on research showing that sulfur- bearing gases that evaporated from the violent asteroid impact on our planet's surface were the main factor for blocking the sunlight and cooling down Earth.

In the tropics, annual mean temperature fell from 27 to 5 degrees Celsius

"It became cold, I mean, really cold," says Brugger. Global annual mean surface air temperature dropped by at least 26 degrees Celsius. The dinosaurs were used to living in a lush climate. After the asteroid's impact, the annual average temperature was below freezing point for about 3 years. Evidently, the ice caps expanded. Even in the tropics, annual mean temperatures went from 27 degrees to mere 5 degrees. "The long-term cooling caused by the sulfate aerosols was much more important for the mass extinction than the dust that stays in the atmosphere for only a relatively short time. It was also more important than local events like the extreme heat close to the impact, wildfires or tsunamis," says co-author Georg Feulner who leads the research team at PIK. It took the climate about 30 years to recover, the scientists found.

In addition to this, ocean circulation became disturbed. Surface waters cooled down, thereby becoming denser and hence heavier. While these cooler water masses sank into the depths, warmer water from deeper ocean layers rose to the surface, carrying nutrients that likely led to massive blooms of algae, the scientists argue. It is conceivable that these algal blooms produced toxic substances, further affecting life at the coasts. Yet in any case, marine ecosystems were severely shaken up, and this likely contributed to the extinction of species in the oceans, like the ammonites.

"It illustrates how important the climate is for all lifeforms on our planet"

The dinosaurs, until then the masters of the Earth, made space for the rise of the mammals, and eventually humankind. The study of Earth's past also shows that efforts to study future threats by asteroids have more than just academic interest. "It is fascinating to see how evolution is partly driven by an accident like an asteroid's impact - mass extinctions show that life on Earth is vulnerable," says Feulner. "It also illustrates how important the climate is for all lifeforms on our planet. Ironically today, the most immediate threat is not from natural cooling but from human-made global warming."
-end-
Article: Brugger, J., Feulner, G., Petri, S. (2017): Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters [DOI:10.1002/2016GL072241]

Weblink to the article: http://onlinelibrary.wiley.com/doi/10.1002/2016GL072241/abstract

Weblink to the VIDEO:https://www.pik-potsdam.de/research/earth-system-analysis/projects/flagships/ace/extinctions

For further information please contact:

PIK press office
Phone: 49-331-288-25-07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
http://www.pik-potsdam.de

Potsdam Institute for Climate Impact Research (PIK)

Related Asteroid Articles:

An iron-clad asteroid
Mineralogists from Jena and Japan discover a previously unknown phenomenon in soil samples from the asteroid 'Itokawa': the surface of the celestial body is covered with tiny hair-shaped iron crystals.
Asteroid impact enriches certain elements in seawater
University of Tsukuba researchers found two processes immediately after the end-Cretaceous asteroid impact that likely supplied chalcophile elements to the ocean, i.e., impact heating and acid rain.
Turbulent times revealed on Asteroid 4 Vesta
Planetary scientists at Curtin University have shed some light on the tumultuous early days of the largely preserved protoplanet Asteroid 4 Vesta, the second largest asteroid in our solar system.
In death of dinosaurs, it was all about the asteroid -- not volcanoes
Volcanic activity did not play a direct role in the mass extinction event that killed the dinosaurs, according to an international, Yale-led team of researchers.
Active asteroid unveils fireball identity
At around 1 a.m. local standard time on April 29, 2017, a fireball flew over Kyoto, Japan.
It really was the asteroid
Fossil remains of tiny calcareous algae not only provide information about the end of the dinosaurs, but also show how the oceans recovered after the fatal asteroid impact.
Gigantic asteroid collision boosted biodiversity on Earth
An international study led by researchers from Lund University in Sweden has found that a collision in the asteroid belt 470 million years ago created drastic changes to life on Earth.
Uncovering the hidden history of a giant asteroid
A massive 'hit-and-run' collision profoundly impacted the evolutionary history of Vesta, the brightest asteroid visible from Earth.
Hubble watches spun-up asteroid coming apart
A small asteroid has been caught in the process of spinning so fast it's throwing off material, according to new data from NASA's Hubble Space Telescope and other observatories.
Hubble captures rare active asteroid
Thanks to an impressive collaboration bringing together data from ground-based telescopes, all-sky surveys and space-based facilities -- including the NASA/ESA Hubble Space Telescope -- a rare self-destructing asteroid called 6478 Gault has been observed.
More Asteroid News and Asteroid Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.