Nav: Home

Experimental therapy may offer hope for rare genetic disorders

January 13, 2020

New experimental therapy may offer hope for rare genetic disorders, as well as more common diseases

BOSTON - Researchers at Massachusetts General Hospital (MGH) have developed a new way to alleviate problems caused by dysfunctional mitochondria, which are the "powerhouses" that produce energy in cells. Their discovery, reported in the journal Nature Biotechnology on January 13, could lead to a new treatment for rare diseases caused by "broken" mitochondria, but could also be used to develop novel therapies for more common age-associated disorders.

All cells have mitochondria. "Mitochondria take electrons from the food we eat and transfer them to oxygen," explains Vamsi Mootha, MD, investigator in the Department of Molecular Biology at MGH, and senior author of the Nature Biotechnology paper. Mootha compares this process to a river flowing down a mountain, with water wheels that harness the flow to produce energy.

However, mitochondrial disorders act like a dam by blocking this smooth flow and causing a pileup of electrons, known as a redox imbalance, and stalling vital chemical reactions inside the cell. "We think toxicity is coming from the fact that the 'waterwheel' is no longer spinning," says Mootha. The excess electrons eventually spill into blood circulation in the form of lactate, a molecule that serves as a marker for the disease occurring inside the cells.

Malfunctioning mitochondria cause more than 300 rare genetic disorders, such as Leigh syndrome (a crippling neurological disease that can present early in infancy) and MELAS (which causes muscle weakness, diabetes, and strokes, with onset usually before age 40). However, a gradual fall-off in mitochondrial function also occurs in Parkinson's disease and other more common disorders. "Even the aging process itself, absent disease, is associated with a decline in mitochondrial activity," says Mootha.

To address the problem, Mootha and his colleagues created a synthetic enzyme (called LOXCAT) by combining two bacterial proteins, lactate oxidase (LOX) and catalase (CAT). His team added LOXCAT to a medium of cultured human cells with defective mitochondria and found that the artificial enzyme converts lactate to pyruvate, which enters cells and picks up electrons, relieving the pileup. Pyruvate in turn converts to lactate, which is released from the cell. LOXCAT reconverts the lactate to pyruvate, which starts the process anew, creating a cycle.

"Our new therapeutic directly targets circulating lactate as a means of safely dissipating excess electrons. Redox balance is restored and flow inside the cell resumes," says Mootha. "What's conceptually new here is that our enzyme doesn't have to enter the cell--it operates on the incoming and exiting chemicals to benefit the cell's inner workings."

Mootha notes that more engineering remains to be done before LOXCAT is ready for testing in humans. But he feels this research, which was funded by the Marriott Foundation, could have a profound impact. "Right now, we have very few, if any, ways of dealing with the consequences of mitochondrial dysfunction," says Mootha. "This novel approach will potentially help a lot of diverse genetic conditions whose common final endpoint is redox imbalance."

The lead author of the Nature Biotechnology paper is Anupam Patgiri, PhD, a research fellow in the Department of Molecular Biology at MGH. Senior author Vamsi Mootha, MD, directs the Mootha Laboratory, which is based at MGH's Department of Molecular Biology. He is also a professor of Systems Biology at Harvard Medical School, an investigator at the Howard Hughes Medical Institute, and a member of the Broad Institute, in Cambridge, Massachusetts.
About the Massachusetts General Hospital Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $1 billion and comprises more than 8,500 researchers working across more than 30 institutes, centers and departments. In August 2019 the MGH was once again named #2 in the nation by U.S. News & World Report in its list of "America's Best Hospitals."

Massachusetts General Hospital

Related Mitochondria Articles:

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.
Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.
Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.
Oxygen deficiency rewires mitochondria
Researchers slow the growth of pancreatic tumor cells.
Self-cannibalizing mitochondria may set the stage for ALS development
Northwestern Medicine scientists have discovered a new phenomenon in the brain that could explain the development of early stages of neurodegeneration that is seen in diseases such as ALS, which affects voluntary muscle movement such as walking and talking.  The discovery was so novel, the scientists needed to coin a new term to describe it: mitoautophagy, a collection of self-destructive mitochondria in diseased upper motor neurons of the brain that begin to disintegrate from within at a very early age.
Uncovering the presynaptic distribution and profile of mitochondria
In a recent study published in the Journal of Neuroscience, scientists from the MPFI and the University of Iowa CCOM have provided unprecedented insight into the presynaptic distribution and profile of mitochondria in the developing and mature calyx of Held.
Temple researchers identify new target regulating mitochondria during stress
Like an emergency response team that is called into action to save lives, stress response proteins in the heart are activated during a heart attack to help prevent cell death.
Runaway mitochondria cause telomere damage in cells
Targeted damage to mitochondria produces a 'Chernobyl effect' inside cells, pelting the nucleus with harmful reactive oxygen species and causing chromosomal damage.
Interplay between mitochondria and nucleus may have implications for new treatment
Mitochondria, the 'batteries' that produce our energy, interact with the cell's nucleus in subtle ways previously unseen in humans, according to research published today in the journal Science.
Dissolving protein traffic jam at the entrance of mitochondria
Researchers from Freiburg discovered a novel mechanism that ensures obstacle-free protein traffic into the powerhouse of the cell.
More Mitochondria News and Mitochondria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at