Nav: Home

Nanosatellites improve detection of early-season corn nitrogen stress

January 13, 2020

URBANA, Ill. - For corn growers, the decision of when and how much nitrogen fertilizer to apply is a perennial challenge. Scientists at the University of Illinois have shown that nanosatellites known as CubeSats can detect nitrogen stress early in the season, potentially giving farmers a chance to plan in-season nitrogen fertilizer applications and alleviate nutrient stress for crops.

"Using this technology, we can possibly see the nitrogen stress early on, before tasseling. That means farmers won't need to wait until the end of the season to see the impact of their nitrogen application decisions," says Kaiyu Guan, assistant professor in the Department of Natural Resources and Environmental Sciences at the University of Illinois, and Blue Waters professor at the National Center for Supercomputing Applications. He is also principal investigator on a new study published in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Being able to detect and address changes in crop nutrient status in real time is vitally important to avoid damage at critical periods and optimize yield. In general, existing satellite technology cannot achieve both high spatial resolution and high revisiting frequency (how often a given satellite comes back to the same spot above the Earth). Alternatively, drones can detect nutrient status in real time, but they usually can only cover local areas; thus, their utility is limited in scale.

CubeSats bridge the gap between existing satellite technology and drones. With more than 100 of the relatively tiny satellites currently in orbit, Guan says, "CubeSats from Planet get down to a 3-meter resolution and revisit the same location every few days. So, right now we can monitor crop nitrogen status in real time for a much broader area than drones."

Guan and his collaborators tested the capabilities of both drones and CubeSats to detect changes in corn chlorophyll content, a proxy for the plant's nitrogen status. The researchers focused on an experimental field in Central Illinois during the 2017 field season. Corn in the field was nitrogen-stressed to varying degrees due to multiple nitrogen application rates and timings, including all nitrogen applied at planting, and split applications at several developmental stages.

The analyzed field was one of several in a larger study looking at nitrogen rates and timing, set up by Emerson Nafziger, professor emeritus in the Department of Crop Sciences at Illinois and co-author on the study.

"The idea was to see how much effect timing and form of nitrogen fertilizer would have on yield. This study allows an evaluation of how well the imaging could capture yield responses to nitrogen applied at different rates and times," Nafziger says.

The scientists compared images from drones and CubeSats, and their signals matched well with tissue nitrogen measurements taken from leaves in the field on a weekly basis. Both technologies were able to detect changes in chlorophyll contents with a similar degree of accuracy and at the same point in the season.

"This information generates timely and actionable insights related to nitrogen stress, and so could provide guidance for additional nitrogen application where it's needed," Guan says.

The implications go beyond optimizing yield.

"The low cost of nitrogen fertilizer and high corn yield potential motivates farmers to apply extra nitrogen as 'insurance' against nitrogen deficiency that lowers yield. But applying more nitrogen than the crop requires is both a financial and environmental risk," says Yaping Cai, graduate student in Guan's research group and lead student author on the paper.

Guan adds, "A better tool for fertilizer use, enabled through new satellite technology and ecosystem modeling, could ultimately help farmers to reduce cost, increase yield, and meanwhile reduce environmental footprint for a sustainable agricultural landscape."
-end-
The article, "Detecting in-season crop nitrogen stress of corn for field trials using UAV- and CubeSat-based multispectral sensing," is published in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [DOI: 10.1109/JSTARS.2019.2953489]. This research was supported by NASA and the Illinois Nutrient Research and Education Council.

Co-authors include Yaping Cai, Kaiyu Guan, Emerson Nafziger, Girish Chowdhary, Bin Peng, Zhenong Jin, Shaowen Wang, and Sibo Wang. Guan, Nafziger, Chowdhary, and Peng are affiliated with the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois.

University of Illinois College of Agricultural, Consumer and Environmental Sciences

Related Nitrogen Articles:

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
Researchers discover new nitrogen source in Arctic
Scientists have revealed that the partnership between an alga and bacteria is making the essential element nitrogen newly available in the Arctic Ocean.
Scientists reveal impacts of anthropogenic nitrogen discharge on nitrogen transport in global rivers
Scientists found that riverine dissolved inorganic nitrogen in the USA has increased primarily due to the use of nitrogen fertilizers.
Nitrogen gets in the fast lane for chemical synthesis
A new one-step method discovered by synthetic organic chemists at Rice University allows nitrogen atoms to be added to precursor compounds used in the design and manufacture of drugs, pesticides, fertilizers and other products.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.