Nav: Home

Long-term memory performance depends upon gating system, study finds

January 13, 2020

JUPITER, Fla.--Jan. 13, 2020--Storing and retrieving memories is among the most important tasks our intricate brains must perform, yet how that happens at a molecular level remains incompletely understood. A new study from the lab of Neuroscience Professor Ronald Davis, PhD, at Scripps Research, Florida, sheds light on one element of that memory storage process, namely the storage and retrieval of a type of hardwired long-term memory.

The Davis team found that moving memories to long-term storage involves the interplay of multiple genes, a known group whose activity must be upregulated, and, unexpectedly, another gatekeeping gene set, Ras, and its downstream connecting molecules, which are down-regulated. If either Ras or its downstream connector Raf are silenced, long-term memory storage is eliminated, the team writes in the Proceedings of the National Academies of Sciences, published the week of Jan. 13.

The type of memory they studied, ironically has a rather difficult-to-remember name: "protein-synthesis dependent long-term memory," or PSD-LTM for short. To study how it and other types of memory form, scientists rely upon the fruit fly, Drosophila melanogaster, as a model organism. The genetic underpinnings of memory storage are mostly conserved across species types, Davis explains.

To assess how the flies' memory consolidation process works at a molecular level, they used a process called RNA interference to lower expression of several candidate genes in several areas of the fly brain. Doing so with both the Ras gene and its downstream molecule Raf in the fly brain's mushroom body, its memory-storage area, had a two-pronged effect. It dramatically enhanced intermediate-term memories while completely eliminating PSD long-term memory of an aversive experience, Davis says.

The team's experiments involved exposing flies to certain odors in one section of a glass tube while simultaneously administering a foot-shock. Flies' subsequent avoidant behavior on exposure to that odor indicated their recollection of the unpleasant shock. Regardless of how many times the flies were "trained," lowering expression of Ras and Raf reduced their PSD long-term memory performance, explains first author Nathaniel Noyes, PhD, a research associate in the Davis lab.

While the Ras enzyme, Ras85D, was already known for its roles in organ development and cancer, the studies showed that in the adult brain, it apparently plays memory gatekeeper, helping direct whether experiences should be remembered as intermediate memory that dissipates after a time, or as long-term "protein-synthesis dependent" memory that persists.

Gating off the memory from the intermediate storage process shifted it over to PSD long-term memory storage, indicates that it's an either-or situation. Intermediate storage appears to be the fly brain's preferential, default pathway, Noyes says. He expects that the neurotransmitter dopamine will prove to play a key signaling role.

"We believe that dopamine signals to the brain that this memory is important enough to be stored long-term. We speculate that Ras and Raf receive this dopamine signal and thereby block intermediate memory and promote PSD long-term memory," Noyes says.

How this "intermediate" memory system works in humans requires further study as well, he adds.

"It's becoming apparent that many of the same genes involved in intermediate memory storage also play a role in mammalian memory and plasticity," he notes.
-end-
In addition to Noyes and Davis, the authors of "Ras acts as a molecular switch between two forms of consolidated memory in Drosophila," published the week of Jan. 13, 2020 in PNAS, include Erica Walkinshaw, also of Scripps Research.

Scripps Research Institute

Related Memory Articles:

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.