Nav: Home

How do X-ray images helped reveal insects' physiological responses to gravity?

January 13, 2020

Imagine you are flipped upside down and standing on your head. After a few seconds, you would feel pressure in your head due to an increased blood flow. Humans and other vertebrates are known to have physiological reactions to gravity with reactions increasing with body size.

A new study by Jake Socha, professor in biomedical engineering and mechanics in Virginia Tech's College of Engineering, published in in the Proceedings of the National Academies of Sciences journal, "Physiological Responses to Gravity in an Insect" shows that insects experience similar physiological effects of gravity.

With Jon Harrison, professor of environmental physiology at Arizona State University, and undergraduate, graduate, and postdoctoral students, Socha assessed the effect of gravity on insects and discovered an active response called functional compartmentalization.

To determine the effect on Schistocerca americana, commonly known as the American grasshopper, the team analyzed X-ray images at Argonne National Laboratory to observe their internal systems. In some images, the grasshoppers were head-up, and in others the grasshoppers' heads faced the ground.

When analyzing the X-ray images of grasshoppers, the researchers discovered that air sacs located in the head had greatly expanded when the insect was head-up (upright) while air sacs in the abdomen were smaller. When the animal was head-down, the opposite was true: the air sacs in the lower part of the body of the head were decreased in size while the air sacs in the thorax were greatly expanded.

"No one expected that a small insect would have any type of response due to their gravitational orientation," Socha said, who is also the director of Virginia Tech's BIOTRANS, an interdisciplinary graduate team of biologists and engineers who work together to study transport in environmental and physiological systems. "This project started by seeing some weird things in X-ray images and asking questions."

Their discoveries indicate that the pressure of gravity may affect the insect's body and its bodily systems, just as in humans. This is counterintuitive to scientific thought and could have larger implications in future research.

Socha compared this effect to diving into a deep swimming pool. As a person dives lower down into the water, there is more pressure. This same concept applies to the grasshopper's body. The part of the body that is lower, or beneath the rest of the body, has higher blood pressure and thus, the air sacs are compressed.

However, when the insect is awake, the response is different. The air sacs change less in response to orientation. To further analyze this active response, called functional compartmentalization, the researchers further examined the grasshopper.

"Our findings suggest that animals had control of the inside of their bodies," Socha said. "Earlier this year, we published a paper with a similar finding. We analyzed beetles and found they had active body responses to compensate for forces on their bodies. So, we were interested in the other physiological responses of other animals."

Grasshoppers and other insects have open circulatory systems, which means that their blood is not contained in closed arteries or veins. Classic understanding of open circulatory systems is that blood flows freely within the body, like liquid in a bottle, and that pressures inside the body would all be similar. The research team discovered that these insects, in fact, could separate, or alter, internal body pressures with a flexible valving system.

"This was remarkable," Socha said. "We had been seeing odd occurrences in X-rays, so we had ideas that something was going on. Finding this gave us the evidence to conclude that grasshoppers do have a mechanism to counteract gravity, which is counterintuitive to most scientists."

The researchers also found that grasshoppers' heart rates change with orientation just as observed in humans. Humans sometimes feel dizzy when standing up too quickly because gravity impedes blood flow to the brain; fast-acting reflexes cause the heart to pump harder to overcome this gravity effect.

Even though insects do not have a closed circulatory system with veins and arteries, most insects typically have a tube-like heart. These researchers found that the grasshopper's heart rate would slow when head-down and beat faster when head-up, thus providing more evidence to point to insects' systems not only being affected by gravity but having active, physiological responses to compensate for gravity's effects, contrary to scientific prediction.

"We have multiple indicators pointing to the grasshoppers responding to its body orientation," Socha said, also an affiliate faculty member in Virginia Tech's biological sciences and mechanical engineering departments. "They respond physiologically to its orientation relative to gravity and have mechanisms inside its body to be able to deal with it. Grasshoppers are able to change their heart rate, respiratory rate, and functionally compartmentalize their bodies to control pressure."
Other Virginia Tech researchers collaborating on the project include Hodjat Pendar, research assistant professor in biomedical engineering and mechanics, and Khaled Adjerid, previously a doctoral student in the department.

Written by Laura Weatherford

Virginia Tech

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at