Collision helped make the Milky Way -- and now we know when

January 13, 2020

Thanks to some astrophysical sleuthing, researchers have pinpointed an early galactic merger that helped shape the Milky Way.

The merger -- a collision, actually -- happened 11.5 billion years ago. That's when a small galaxy called Gaia-Enceladus slammed into what then existed of the Milky Way, Earth's home galaxy, which is about 13.5 billion years old.

"We know today that the Milky Way was formed by the merger of many small galaxies. This is the first time we have been able to determine when such a merger happened," said Sarbani Basu, professor and chair of astronomy at Yale and co-author of a new study reporting the discovery. "This is an important step in understanding when the Milky Way accreted, or collected, its mass."

The study appears Jan. 13 in the journal Nature Astronomy. Dozens of astronomers from around the world, led by the University of Birmingham in the U.K., conducted the work. Yale graduate student Joel Ong is also a co-author.

The research team followed the life story of a single, bright star in the Indus constellation, visible today from Earth's southern hemisphere. The scientists said this star, nu Indi, was already orbiting inside the Milky Way prior to the Gaia-Enceladus collision, which unfolded over millions of years. As the merger progressed, it altered nu Indi's orbit around the center of the Milky Way, providing a marker for when the merger happened. (Stars have orbits, just as planets do.)

"My role was to determine the age of the star (nu Indi) using seismic data," Basu said. "Like many low-mass stars, this star pulsates, or quakes, continuously. The quakes can be described as a series of tones and overtones."

Basu and her colleagues calculated "frequencies" from nu Indi's tones and overtones. Those frequencies, in turn, indicated the star's physical structure and properties. From there, the researchers were able to gauge nu Indi's stage of development, factor in its brightness, and estimate its age.

Knowing nu Indi's age provided a limit for when the merger could have taken place, the researchers said.

Some of the world's latest technology aided researchers in their detective work. They got data on nu Indi's quakes from NASA's Transiting Exoplanet Survey Satellite (TESS). Launched in 2018, TESS is surveying stars across most of the sky to search for planets orbiting those stars and to study the stars themselves. The researchers also used information collected from the European Space Agency (ESA) Gaia Mission.

University of Birmingham astrophysicist Bill Chaplin, lead author of the study, said determining the natural oscillations of stars -- called asteroseismology -- is a way to better understand the history of stars and the environments in which they formed.

"This study demonstrates the potential of asteroseismology with TESS, and what is possible when one has a variety of cutting-edge data available on a single, bright star," Chaplin said.
-end-


Yale University

Related Astronomy Articles from Brightsurf:

Spitzer space telescope legacy chronicled in Nature Astronomy
A national team of scientists Thursday published in the journal Nature Astronomy two papers that provide an inventory of the major discoveries made possible thanks to Spitzer and offer guidance on where the next generation of explorers should point the James Webb Space Telescope (JWST) when it launches in October 2021.

New technology is a 'science multiplier' for astronomy
A new study has tracked the long-term impact of early seed funding obtained from the National Science Foundation on many key advances in astronomy over the past three decades.

Powerful new AI technique detects and classifies galaxies in astronomy image data
Researchers at UC Santa Cruz have developed a powerful new computer program called Morpheus that can analyze astronomical image data pixel by pixel to identify and classify all of the galaxies and stars in large data sets from astronomy surveys.

Astronomy student discovers 17 new planets, including Earth-sized world
University of British Columbia astronomy student Michelle Kunimoto has discovered 17 new planets, including a potentially habitable, Earth-sized world, by combing through data gathered by NASA's Kepler mission.

Task force recommends changes to increase African-American physics and astronomy students
Due to long-term and systemic issues leading to the consistent exclusion of African-Americans in physics and astronomy, a task force is recommending sweeping changes and calling for awareness into the number and experiences of African-American students studying the fields.

How to observe a 'black hole symphony' using gravitational wave astronomy
New research led by Vanderbilt astrophysicist Karan Jani presents a compelling roadmap for capturing intermediate-mass black hole activity.

Graphene sets the stage for the next generation of THz astronomy detectors
Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes.

3D holograms bringing astronomy to life
Scientists unravelling the mysteries of star cluster formation have taken inspiration from a 19th century magic trick, to help explain their work to the public.

The vibrating universe: Making astronomy accessible to the deaf
Astronomers at the University of California, Riverside, have teamed with teachers at the California School for the Deaf, Riverside, or CSDR, to design an astronomy workshop for students with hearing loss that can be easily used in classrooms, museums, fairs, and other public events.

Prehistoric cave art reveals ancient use of complex astronomy
As far back as 40,000 years ago, humans kept track of time using relatively sophisticated knowledge of the stars

Read More: Astronomy News and Astronomy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.