Research reveals how teeth functioned and evolved in giant mega-sharks

January 13, 2021

A pioneering study by University of Bristol researchers finds that the evolution of teeth in the giant prehistoric shark Megalodon and its relatives was a by-product of becoming huge, rather than an adaptation to new feeding habits.

The iconic extinct Megalodon was the largest shark to ever roam the seas. Its name translates to 'big tooth', making reference to its massive teeth, which represent the most abundant fossil remains of the species. They are broad and triangular, nothing like the curved, blade-like teeth of the closest relatives of Megalodon.

The differences in tooth shape seen in this group of giant sharks has been traditionally thought to reflect a shift in diet. While the oldest relatives probably used their teeth to pierce small and fast-moving prey like fish, Megalodon most likely used them to bite off big chunks of meat from marine mammals or dismember such prey with powerful lateral head shakes.

In the new study published today in the journal Scientific Reports, scientists used computational tools to understand how the dentitions of these megatooth sharks functioned during feeding.

Antonio Ballell, PhD student at the University of Bristol's School of Earth Sciences, said: "We applied engineering techniques to digitally simulate how different tooth shapes handled bite forces and loads resulting from lateral head movements.

"This method, called Finite Element Analysis, has been previously used to understand how resistant different biological structures are under specific forces.

"We expected to find that Megalodon teeth could resist forces better than those of its older and smaller relatives. Surprisingly, when we removed tooth size from the simulations, we recovered the opposite pattern: Megalodon teeth are relatively weaker than the most gracile teeth of other megatooth sharks."

Dr Humberto Ferrón, postdoctoral researcher and co-author of the study, said: "Our results might seem to be at odds with traditional functional interpretations of the dentitions of these group of giant sharks. We think that other biological processes might be responsible for the evolutionary change in their dentitions.

"For example, modifications in tooth shape that occurred from the older, smaller species to that of the more recent, larger forms like Megalodon are very similar to those observed along the growth of Megalodon.

"That is, juvenile Megalodon individuals have teeth that resemble those of older megatooth sharks. Thus, instead of feeding specialization, we think that the acquisition of its gigantic body size was responsible for the evolution of the peculiar teeth of Megalodon."
-end-


University of Bristol

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.