Limits of atomic nuclei predicted

January 13, 2021

Atomic nuclei are held together by the strong interaction between neutrons and protons. About ten percent of all known nuclei are stable. Starting from these stable isotopes, nuclei become increasingly unstable as neutrons are added or removed, until neutrons can no longer bind to the nucleus and "drip" out. This limit of existence, the so-called neutron "dripline", has so far been discovered experimentally only for light elements up to neon. Understanding the neutron dripline and the structure of neutron-rich nuclei also plays a key role in the research program for the future accelerator facility FAIR at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt.

In a new study, "Ab Initio Limits of Nuclei," published in the journal Physical Review Letters as an Editors' Suggestion with an accompanying synopsis in APS Physics, Professor Achim Schwenk of TU Darmstadt and a Max Planck Fellow at the MPI for Nuclear Physics in Heidelberg, together with scientists from the University of Washington, TRIUMF and the University of Mainz, succeeded in calculating the limits of atomic nuclei using innovative theoretical methods up to medium-mass nuclei. The results are a treasure trove of information about possible new isotopes and provide a roadmap for nuclear physicists to verify them.

The new study is not the first attempt to theoretically explore the extremely neutron-rich region of the nuclear landscape. Previous studies used density functional theory to predict bound isotopes between helium and the heavy elements. Professor Schwenk and colleagues, on the other hand, explored the chart of nuclides for the first time based on ab initio nuclear theory. Starting from microscopic two- and three-body interactions, they solved the many-particle Schrödinger equation to simulate the properties of atomic nuclei from helium to iron. They accomplished this by using a new ab initio many-body method - the In-Medium Similarity Renormalization Group -, combined with an extension that can handle partially filled orbitals to reliably determine all nuclei.

Starting from two- and three-nucleon interactions based on the strong interaction, quantum chromodynamics, the researchers calculated the ground-state energies of nearly 700 isotopes. The results are consistent with previous measurements and serve as the basis for determining the location of the neutron and proton driplines. Comparisons with experimental mass measurements and a statistical analysis enabled the determination of theoretical uncertainties for their predictions, such as for the separation energies of nuclei and thus also for the probability that an isotope is bound or does not exist (see figure).

The new study is considered a milestone in understanding how the chart of nuclides and the structure of nuclei emerges from the strong interaction. This is a key question of the DFG-funded Collaborative Research Center 1245 "Nuclei: From Fundamental Interactions to Structure and Stars" at the TU Darmstadt, within which this research was conducted. Next, the scientists want to extend their calculations to heavier elements in order to advance the input for the simulation of the synthesis of heavy elements. This proceeds in neutron-rich environments in the direction of the neutron dripline and occurs in nature when neutron stars merge or in extreme supernovae.
-end-


Technische Universitat Darmstadt

Related Helium Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Why there is no speed limit in the superfluid universe
Physicists from Lancaster University have established why objects moving through superfluid helium-3 lack a speed limit; exotic particles that stick to all surfaces in the superfluid.

First ever observation of 'time crystals' interacting
For the first time ever, scientists have witnessed the interaction of a new phase of matter known as 'time crystals'.

NASA sounding rocket finds helium structures in sun's atmosphere
Helium is the second most abundant element in the universe after hydrogen.

Physicists study mirror nuclei for precision theory test
A precision measurement of helium and hydrogen mirror isotopes reveals new questions in understanding of nuclear structure.

Researchers observe ultrafast processes of single molecules for the first time
Graz University of Technology researchers describe in Physical Review Letters how a molecule moves in the protective environment of a quantum fluid.

Frozen-planet states in exotic helium atoms
In a new study published in EPJ D. Tasko Grozdanov from Serbia and Evgeni Solov'ev from Russia describe the configuration and energy levels of antiprotonic helium that can potentially be produced by colliding slow antiprotons with ordinary helium at CERN.

Nanobubbles in nanodroplets
Freiburg researchers investigate ultrafast reaction of superfluid helium triggered by extreme ultraviolet laser pulses.

Gamma-ray laser moves a step closer to reality
A physicist at the University of California, Riverside, has performed calculations showing hollow spherical bubbles filled with a gas of positronium atoms are stable in liquid helium.

New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.

Read More: Helium News and Helium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.