Study suggests compound protects myelin, nerve fibers

January 13, 2021

A compound developed at Oregon Health & Science University appears to protect nerve fibers and the fatty sheath, called myelin, that covers nerve cells in the brain and spinal cord.

The discovery, published in the Journal of Neuroimmunology, could be important in treating or preventing the progression of multiple sclerosis and other central nervous system disorders. The new research in a mouse model advances earlier work to develop the compound - known as sobetirome - that has already showed promise in stimulating the repair of myelin.

"Sobetirome and related drugs are effective at stimulating myelin repair after damage has occurred. Our new findings now suggest that these drugs could also prove to be beneficial for preventing damage from occurring," said senior author Dennis Bourdette, M.D., former chair and professor emeritus of neurology in the OHSU School of Medicine. "It means that these drugs have a dual effect that we didn't know about before."

Nerve fibers carry electrical impulses between nerve cells, and myelin is an insulation-like protective sheath covering nerve fibers.

Myelin and nerve fibers become damaged in multiple sclerosis, slowing or blocking electrical signals required for us to see, move our muscles, feel sensations and think. Researchers previously developed sobetirome as a compound that mimics the effect of the thyroid hormone in stimulating the maturation of precursor cells known as oligodendrocytes, which generate myelin. OHSU scientists developed a strategy to greatly increase the delivery of sobetirome into the brain of mice - remyelinating nerve fiber sheaths after damage had occurred.

The OHSU technology related to these findings is licensed to a startup biotechnology company committed to developing new medications for demyelinating diseases such as MS. Co-founders of the company include Bourdette along with two other co-authors on the new study: Tom Scanlan, Ph.D., professor of physiology and pharmacology in the OHSU School of Medicine, and Ben Emery, Ph.D., associate professor of neurology in the OHSU School of Medicine.

In the new research, scientists tested the compound by inducing an autoimmune disease in a mouse model of MS, causing inflammation damage to myelin and nerve fibers.

Lead author Priya Chaudhary, M.D., assistant professor of neurology in the OHSU School of Medicine who is focused on developing therapies for neurodegenerative diseases, said that the technique is a common step in drug discovery.

"It is important to show the effectiveness of potential drugs in a model that is most commonly used for developing new therapies," Chaudhary said.

The researchers discovered that they were able to prevent damage to myelin and nerve fibers from occurring, by stimulating a protective response in the cells that make and maintain myelin. They also reduced the activity of migroglia, a type of inflammatory cell in the brain and spinal cord that's involved in causing damage in multiple sclerosis and other diseases.

"The effects are impressive and are at least in part consistent with a neuroprotective effect with particular inhibition of myelin and axon degeneration, and oligodendrocyte loss," the authors write.

The discovery, if proven in clinical trials involving people, could be especially useful for people who are diagnosed with multiple sclerosis early in the disease's progression.

"The drug could protect the nervous system from damage and reduce the severity of the disease," Bourdette said.
-end-
Funding for this research was provided by the National Multiple Sclerosis Society, award numbers RG-5199A4, RG-1607-25053 and RG-5106A1/1; the National Institutes of Health, award numbers DK57798 and P30 NS061800; Race to Erase MS; and the OHSU Laura Fund for Innovation in Multiple Sclerosis.

In the interest of ensuring the integrity of our research and as part of our commitment to public transparency, OHSU actively regulates, tracks and manages relationships that our researchers may hold with entities outside of OHSU. In regards to this research project, Bourdette, Scanlan and Emery have significant interests in Autobahn Therapeutics, a company that may have a commercial interest in the results of this research and technology. Review details of OHSU's conflict of interest program to find out more about how we manage these business relationships.

Oregon Health & Science University

Related Multiple Sclerosis Articles from Brightsurf:

New therapy improves treatment for multiple sclerosis
A new therapy that binds a cytokine to a blood protein shows potential in treating multiple sclerosis, and may even prevent it.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

New therapeutic options for multiple sclerosis in sight
Strategies for treating multiple sclerosis have so far focused primarily on T and B cells.

Diet has an impact on the multiple sclerosis disease course
The short-chain fatty acid propionic acid influences the intestine-mediated immune regulation in people with multiple sclerosis (MS).

The gut may be involved in the development of multiple sclerosis
It is incompletely understood which factors in patients with multiple sclerosis act as a trigger for the immune system to attack the brain and spinal cord.

Slowing the progression of multiple sclerosis
Over 77,000 Canadians are living with multiple sclerosis, a disease whose causes still remain unknown.

7T MRI offers new insights into multiple sclerosis
Investigators from Brigham and Women's Hospital have completed a new study using 7 Tesla (7T) MRI -- a far more powerful imaging technology -- to further examine LME in MS patients

How to improve multiple sclerosis therapy
Medications currently used to treat multiple sclerosis (MS) can merely reduce relapses during the initial relapsing-remitting phase.

Vaccinations not a risk factor for multiple sclerosis
Data from over 12,000 multiple sclerosis (MS) patients formed the basis of a study by the Technical University of Munich (TUM) which investigated the population's vaccination behavior in relation to MS.

Read More: Multiple Sclerosis News and Multiple Sclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.