Uncalculated risks in some pesticides, UCR study finds

January 14, 2005

Researchers at the University of California, Riverside have demonstrated that isomers - or the mirror-image structures - of some pesticides, although chemically identical, have very different biological and environmental impacts between the two sides. This may have significant implications for risk assessment and research and development directions of new products.

The environmental risks of pesticides have been traditionally evaluated on the basis of their specific chemical structure, according to Jay Gan, a UCR professor of environmental chemistry. He found, however, that this group, known as chiral pesticides, including many widely used organophosphates and synthetic pyrethroids, pose previously uncalculated toxic risks due to the differing biological reactions of the isomers in the environment.

A characteristic of chiral compounds is that they occur as isomers with two (or more) identical but mirror-image structures that, as Gan's research indicates, while chemically identical, may behave biologically differently. These mirror-image molecules are known as enantiomers. Currently about 25 percent of pesticides fall into this classification and this ratio is expected to increase as new products are being introduced into the market.

Gan's findings add weight to the argument that regulators should consider whether a product is a chiral compound when assessing its risk, and that the chemical industry should pursue the value of producing single isomer products instead of mixed isomer products.

By using pesticides with just the active isomer, farmers will likely achieve the same degree of pest control at a much-reduced rate of chemical use. This will have environmental benefits as much less chemical is introduced into the environment.

The findings were published in a paper titled Enantioselectivity in Environmental Safety of Current Chiral Insecticides in last week's online edition of the Proceedings of the National Academy of Sciences. Gan published the paper in cooperation with a team of UCR colleagues including Daniel Schlenk, professor of aquatic ecotoxicology; Soil Physics Professor, William A. Jury; and visiting professor Weiping Liu.

Gan and his colleagues at UC Riverside decided to look at chiral insecticides that are widely used today. They examined five common insecticides, including the organophosphates, such as profenofos, and synthetic pyrethroids, such as permethrin. For all these compounds, one of the optical isomers, or enantiomers, was consistently over 10 times more toxic than the other to Ceriodaphia, a small crustacean often used to assess water toxicity.

The researchers also found that a specific enantiomer lingered longer in the environment than the other enantiomers, making one enantiomer of permethrin almost twice as prevalent in sediment or runoff water. This means that the environmental impact of these pesticides may depend on the behavior of a particular enantiomer instead of the whole compound, the team concluded.

Regulators currently examine the safety of the pesticide straight from the factory, in which both enantiomers are normally present in an equal ratio. On the other hand, knowing about such selectivity would be valuable for the chemical industry. For instance, if only one enantiomer is known to contribute to the pest control efficacy, it would be environmentally advantageous to manufactured products containing just the active component. The rate of use may be cut in half, and the chemical load into the environment will also be halved.

"The difference in terms of pesticide regulation and future R&D directions could be pretty drastic for chiral pesticides," said Gan.
-end-


University of California - Riverside

Related Pesticides Articles from Brightsurf:

More plant diversity, less pesticides
Increasing plant diversity enhances the natural control of insect herbivory in grasslands.

In pursuit of alternative pesticides
Controlling crop pests is a key element of agriculture worldwide, but the environmental impact of insecticides is a growing concern.

Two pesticides approved for use in US harmful to bees
A previously banned insecticide, which was approved for agricultural use last year in the United States, is harmful for bees and other beneficial insects that are crucial for agriculture, and a second pesticide in widespread use also harms these insects.

Dingoes have gotten bigger over the last 80 years - and pesticides might be to blame
The average size of a dingo is increasing, but only in areas where poison-baits are used, a collaborative study led by UNSW Sydney shows.

Pesticides can protect crops from hydrophobic pollutants
Researchers have revealed that commercial pesticides can be applied to crops in the Cucurbitaceae family to decrease their accumulation of hydrophobic pollutants, thereby improving crop safety.

Honeybee lives shortened after exposure to two widely used pesticides
The lives of honeybees are shortened -- with evidence of physiological stress -- when they are exposed to the suggested application rates of two commercially available and widely used pesticides.

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.

A proposal to change environmental risk assessment for pesticides
Despite regulatory frameworks designed to prevent environmental damage, pesticide use is still linked to declines in insects, birds and aquatic species, an outcome that raises questions about the efficacy of current regulatory procedures.

SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.

Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.

Read More: Pesticides News and Pesticides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.