Gene variation associated with brain atrophy in mild cognitive impairment

January 14, 2014

OAK BROOK, Ill. - The presence of a gene variant in people with mild cognitive impairment (MCI) is associated with accelerated rates of brain atrophy, according to a new study published online in the journal Radiology.

The study focused on the gene apolipoprotein E (APOE), the most important genetic factor known in non-familial Alzheimer's disease (AD). APOE has different alleles, or gene variations, said the study's senior author, Jeffrey R. Petrella, M.D., associate professor of radiology at Duke University School of Medicine in Durham, N.C.

"We all carry two APOE alleles, and most people have at least one copy of the APOE epsilon 3 (ɛ3) variant, which is considered neutral with respect to Alzheimer's risk," Dr. Petrella said.

The less common epsilon 4 (ɛ4) allele, in contrast, is associated with a higher risk for development of AD, earlier age of onset, and faster progression in those affected, as compared with the other APOE alleles.

Dr. Petrella and colleagues recently analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) involving 237 patients, mean age 79.9, with MCI, a slight but noticeable decline in cognitive ability that is tied to a higher risk of AD. The researchers used MRI to measure brain atrophy rates in these patients over a 12- to 48-month period.

The ɛ4 carriers in the study group exhibited markedly greater atrophy rates than ɛ3 carriers in 13 of 15 brain regions hypothesized to be key components of the cognitive networks disrupted in AD.

"The results showed atrophy in brain regions we know are affected by AD, in a population of patients who do not have AD, but are at risk for it," Dr. Petrella said. "This suggests the possibility of a genotype-specific network of related brain regions that undergo faster atrophy in MCI and potentially underlies the observed cognitive decline."

The researchers did not explore why APOE ɛ4 might accelerate atrophy, but the affect is likely due to a combination of factors, noted Dr. Petrella.

"The protein has a broad role in the transport and normal metabolism of lipids and a protective function on behalf of brain cells, including its role in the breakdown of beta-amyloid, one of the proteins implicated in the pathophysiology of AD," he said.

With MRI playing an increasingly prominent role in MCI research, Dr. Petrella predicted that increased knowledge about the effects of APOE will improve the design and execution of future clinical trials. For instance, researchers could enrich their samples with ε4 patients in MCI prevention trials to better determine potential treatment effects on brain regions vulnerable to degeneration.

The advances in knowledge will also help expand the role of MRI measures in clinical trials investigating novel drugs with potentially disease-modifying capabilities.

"Current FDA-approved drugs treat symptoms, but don't modify the underlying cause of the disease," Dr. Petrella said. "We want to make continued inroads toward the goal of developing and testing drugs that modify the disease process itself."
-end-
"Mapping the Effect of the Apolipoprotein E Genotype on 4-Year Atrophy Rates in an Alzheimer's Disease-related Brain Network." Collaborating with Dr. Petrella were Christopher A. Hostage, M.D., Kingshuk Roy Choudhury, Ph.D., and P. Murali Doraiswamy, M.B.B.S., FRCP. For the Alzheimer's Disease Neuroimaging Initiative.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 53,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Radiological Society of North America

Related Brain Cells Articles from Brightsurf:

Immune cells sculpt circuits in the brain
Brain immune cells, called microglia, protect the brain from infection and inflammation.

How chandelier cells light up the brain
Chandelier cells stand out among brain cells for their elaborate, branching structure.

Appetite can be increased by cells in the brain
Tanycytes are glial cells, which communicate with neurons in the brain to inform it of what we have eaten.

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Manipulating brain cells by smartphone
Researchers have developed a soft neural implant that can be wirelessly controlled using a smartphone.

How brain cells pick which connections to keep
A new study shows that the protein CPG15 acts as a molecular proxy of experience to mark synapses for stabilization, a key step in ensuring brain circuits can be refined by experience for optimal functional efficiency.

Dormant neural stem cells in fruit flies activate to generate new brain cells
Researchers in Singapore have discovered the mechanism behind how neural stem cells in fruit flies are activated to stimulate the generation of new brain cells.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Read More: Brain Cells News and Brain Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.