Researchers identify key components linking circadian rhythms and cell division cycles

January 14, 2014

CINCINNATI--Researchers at the University of Cincinnati (UC) have identified key molecular components linking circadian rhythms and cell division cycles in Neurospora crassa, providing insights that could lead to improved disease treatments and drug delivery.

The researchers in the UC College of Medicine Department of Molecular and Cellular Physiology, led by Christian Hong, PhD, published their findings Monday, Jan. 13, online ahead of print in PNAS (Proceedings of the National Academy of Sciences).

"Our work has large implications for the general understanding of the connection between the cell cycle and the circadian clock," says Hong, an assistant professor in the molecular and cellular physiology department who collaborated with an international team of researchers on the project.

The circadian rhythm, often referred to as the biological clock, is a cycle of biological activity based on a 24-hour period and generated by an internal clock synchronized to light-dark cycles and other external cues.

"Everything has a schedule, and we are interested in understanding these schedules at a molecular level," Hong says. "We also wanted to know the components that connect two different oscillators (the circadian clock and cell division, or mitosis)."

Using the filamentous (thread-like) fungi Neurospora crassa, the researchers investigated the coupling between the cell cycle and the circadian clock using mathematical modeling and experimentally validated model-driven predictions. They demonstrated a mechanism that is conserved (constant) in Neurospora as in mammals, which results in circadian clock-gated mitotic cycles.

"The cell divisions happened during a certain time of day," Hong says, "and they were molecularly regulated by the mechanisms of circadian rhythms."

The researchers showed that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog (possessing similar DNA sequence) of mammalian WEE1 kinase.

Additionally, the researchers conducted phase-shift experiments in which they transferred Neurospora to constant darkness, then administered a 90-minute pulse of white fluorescent light at indicated time points in order to induce phase-shift.

"We were able to show that when we phase-shift the circadian clock, we also observe phase-shifting of the cell cycle components," Hong says. By building on experimentally validated mathematical models from Neurospora, researchers will be able to make predictions in other Neurospora strains and mammalian cells.

As Hong puts it, "This discovery will serve as a stepping stone for further investigations to uncover conserved principles of coupled mechanisms between the cell cycle and circadian rhythms."
-end-
Funding for Hong's research was provided by a four-year, $3.7 million grant from the Defense Advanced Research Projects Agency (DARPA), an agency of the U.S. Department of Defense. He also received startup funds from UC's molecular and cellular physiology department.

University of Cincinnati Academic Health Center

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.