Nav: Home

The anatomy of petal drop in sunflowers

January 14, 2015

ITHACA, NY - Despite their consumer popularity as cut flowers, some sunflowers are difficult to market because of their tendency to lose petals soon after their flowers open. This characteristic, "petal drop", which in some varieties can occur within a day of the flowers' opening, ruins the appearance of sunflowers and damages their market value. Sunflower growers interested in finding cultivars that are less prone to this condition have had limited information about petal drop, but a new study in the Journal of the American Society for Horticultural Science contains findings can inform both sunflower breeding programs and consumers' choices.

Joyous Suiyigheh Tata and Hans Christian Wien from the Department of Horticulture at Cornell University studied the abscission zone, a differentiated region where petal drop initiates, at the base of petals of sunflower florets in two different cultivars. "We wanted to determine if differences in the abscission zone among sunflower cultivars were correlated with differences in timing of petal drop," the authors said. Two pollen-free hybrid sunflower cultivars were selected for evaluation: Procut Bicolor, which loses its petals easily, and Procut Yellow Lite, which holds its petals much longer.

For the first experiment, the researchers measured separation force for the two sunflower cultivars using a modified soil cone micropenetrometer, an apparatus that measures separation forces in the opposite direction. "The separation force experiments showed that detachment forces switched from an initial high to low in both cultivars because of the maturation of the separation layer. This maturation occurred earlier in the cultivar that is first to lose its petals (Procut Bicolor)," the authors said. They noted that there were no force readings for the short-lived cultivar on day 9 and day 12 because the flower had already wilted.

"In the second experiment, we studied the changes in the anatomy of the petal-achene juncture of the two cultivars," the scientists explained. Three stages from Procut Bicolor (PBC) and four stages from Procut Yellow Lite (PYL) were studied. These stages represent a time course with physiological relevance; when the flower just opens (anthesis), 8 days (the end of flower life for PBC), and 12 days (the end of flower life for PYL). The study also included analyses of petal anatomy at 4 days after harvest. The "end of flower life" was defined as the time when detachment force equals zero; when simply touching the petals caused them to fall off easily. Results of the analyses showed that cell division at the abscission zone of the short-lived cultivar occurred earlier than in the long-lived cultivar. "These results reveal that there was a difference in timing in the formation and maturation of the separation layer between the two cultivars," the authors said.

Interestingly, analyses showed that the mean "break strength" of cultivars in the yellow group was higher and significantly different from cultivars in the orange and bicolor groups, which were in turn higher than cultivars in the red group. Mean vase life (12 days) of the sunflowers in the yellow group was longer than cultivars in the orange group (10 days), while the vase life of the orange group was longer than cultivars in the bicolor group (9 days). The vase life of the red cultivars was shortest at 8 days. "We found that vase life has a strong relationship with flower color; the darker cultivars in the study had a shorter vase life compared with the lighter cultivars," the scientists remarked.

"The anatomy of petal drop in sunflower is similar to the majority of established descriptions in other species; the process involves the separation of four to five rows of smaller transversely oriented cells that lay horizontally across the diameter at the juncture between the petal and the achene, the separation layer," the authors said. "The concept that the timing of the maturation of the separation layer in the abscission zone helps determine the timing of petal drop is strongly supported by both the physical and anatomical investigations."

The authors concluded that the regression equation and results from the petal detachment force experiments can be used to screen sunflower cultivars in order to determine groupings of short-lived vs. long-lived cultivars. They said that the study contains beneficial information for sunflower breeding programs working to improve the breed's longevity, which can ultimately lead to increased sunflower sales.
The complete study and abstract are available on the ASHS J. Amer. Soc. Hort. Sci. electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at

American Society for Horticultural Science

Related Cell Division Articles:

Discovery of a novel chromosome segregation mechanism during cell division
When cells divide, chromosomes need to be evenly segregated. This equal distribution is important to accurately pass genetic information to the next generation.
Researchers identify earliest known protein needed for cell division
Researchers from three US universities have identified, using roundworms, the earliest-acting protein known to duplicate the centriole, a tiny cylinder-shaped structure that is a key component of the machinery that organizes cell division in animals.
Study finds new target for controlling cell division
Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency when a cell is ready to split.
Calcium aids chromosome condensation prior to cell division
Research led by the University of Osaka found that calcium ions help maintain the structure of chromosomes during mitosis by promoting their condensation.
Live cell imaging of asymmetric cell division in fertilized plant cells
Plant biologists have succeeded for the first time in visualizing how egg cells in plants divides unequally (asymmetric cell division) after being fertilized.
Three rings stop cell division in plants
Arising from a collaboration between plant and animal biologists, and organic chemists at ITbM, Nagoya University, the group succeeded in developing a new compound, a triarylmethane that can rapidly inhibit cell division in plants.
Strong, steady forces at work during cell division
Biologists who study the mechanics of cell division have for years disagreed about how much force is at work when the cell's molecular engines are lining chromosomes up in the cell, preparing to winch copies to opposite poles across a bridge-like structure called the kinetochore to form two new cells.
Unconventional cell division in the Caribbean Sea
Bacteria are immortal as long as they keep dividing. For decades it has been assumed that a continuous, proteinaceous ring is necessary to drive the division of most microorganisms.
Differing duration of brain stem cell division
Stem cells in the developing human brain take more time to arrange the chromosomes before distribution than stem cells of great apes.
Cell division and inflammatory disease link revealed
A ground-breaking study by University of Manchester and Liverpool scientists and published in the journal eLife has identified a new link between inflammation and cell division.

Related Cell Division Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".