Nav: Home

Researchers reveal high performance CNT catalyst relating to its electroconductivity

January 14, 2018

Recent research published in a report in NANO showed biofuels were obtained from Jatropha Oil using carbon nanotube (CNT) catalyst, which showed efficient cracking activity. The performance was activated by the high stability, metal sites, acid sites, electroconductivity, and coking tolerance of CNT. Two cracking circulations were found in the hydroprocessing. The sulphur-free process was also eco-friendly.

Hydroprocessing of vegetable oil is widely used to produce biodiesel. The catalyst is very significant for the performance of the process. As an electric charge carrier, the researchers found that the velocity of electron reaches the speed of light 1/ 300 in graphene, far more than the normal conductor. Carbon nanotubes (CNT) are constructed of rolled up graphene sheets with one dimensional extended π conjugated structures.

A team of researchers from the Beihang University in China, Beijing has demonstrated that CNT catalysts showed efficient cracking activity. The electroconductivity of the CNT support was especially beneficial for the improvement of catalyst activity. The nickel (Ni) and phosphotungstic acid (HPW) supported on CNT were prepared by the team as catalyst for hydroprocessing of Jatropha oil. Their report appears in the December issue of the journal NANO.

The alkanes yield of C15-C18 was 88.5 wt%, Iso/n ratio was 0.8 and conversion was 97.7% at 320 °C, 3.0 MPa and 1.0/h over the Ni-HPW(40)/CNT catalyst, while the yield of < C15 alkanes reached 51.9 wt% at 400 °C. The distribution of products could be adjusted by reaction temperature. The activity of metal sites was affected by the transformation of oxidation/ reduction of Ni species, which required high electroconductivity of the support. The activity of acids sites was also closely related to the electroconductivity of the support. Thus, the cracking performance was elevated by the addition of Ni or HPW and the electroconductivity of the support. The cracking activity was enhanced by the increased acidity of the catalyst, which resulted in more carbenium ions formed, and the carbenium ion stimulated the isomerization reaction. The transfer of hydrogen electron was accelerated by the electroconductivity of the catalyst, which enhanced the cracking activity of the catalyst, and the results coincided with the formation mechanism of catalyst acidity. The formation of carbenium ion promoted the β-elimination process, which then launched the two circulations for further cracking. The ability of coking tolerance may be related to the morphology of the catalyst and the repulsive force between carbon atoms. Meanwhile, the catalyst was used without sulfurization and the cracking process was green. "This catalyst can be regarded as an attractive candidate for cracking conversion of vegetable oils due to its high performance and clean properties " according to Xiaosong Yang, the senior author of the paper. The Beihang University team is currently exploring catalysts with high performances.
-end-
For more insight into the research described, readers are invited to access the paper on NANO.

NANO is an international peer-reviewed monthly journal for nanoscience and nanotechnology that presents forefront fundamental research and new emerging topics. It features timely scientific reports of new results and technical breakthroughs and publishes interesting review articles about recent hot issues.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 130 journals in various fields. World Scientific collaborates with prestigious organizations like the Nobel Foundation and US National Academies Press to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit http://www.worldscientific.com.

For more information, contact Judy Yeo at jlyeo@wspc.com.

World Scientific

Related Carbon Nanotube Articles:

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?
Graphene substrate improves the conductivity of carbon nanotube network
Scientists at Aalto University, Finland, and the University of Vienna, Austria, have combined graphene and single-walled carbon nanotubes into a transparent hybrid material with conductivity higher than either component exhibits separately.
Extreme wildfires threaten to turn boreal forests from carbon sinks to carbon sources
A research team investigated the impact of extreme fires on previously intact carbon stores by studying the soil and vegetation of the boreal forest and how they changed after a record-setting fire season in the Northwest Territories in 2014.
Carbon nanotube tape stays sticky in extreme temperatures
In very hot or cold environments, conventional tape can lose its stickiness and leave behind an annoying residue.
Discovery of microbial activity in carbon sinking as a gatekeeper of Earth's deep carbon
Carbon is transported from Earth's surface to the mantle where the oceanic crust subducts beneath continents.
Carbon nanotube nanoreactors to stabilize metastable structures
Some metastable structures have been predicted to have high potential applications due to their unique properties.
From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template
Researchers from Tokyo Metropolitan University have used carbon nanotube templates to produce nanowires of transition metal monochalcogenide (TMM), which are only 3 atoms wide in diameter.
The carbon offset market: Leveraging forest carbon's value in the Brazilian Amazon
As companies seek and are required to reduce their greenhouse gas emissions, the world's carbon markets are expanding.
Wetland experts explain role of vital carbon sinks carbon cycle in new report
Wetlands and soils experts Rod Chimner and Evan Kane of Michigan Tech contributed to the Second State of the Carbon Cycle Report (SOCCR2).
S, N co-doped carbon nanotube-encapsulated CoS2@Co
Researchers report cobalt disulphide encapsulated in self-catalyzed carbon nanotubes (S, N-CNTs/CoS2@Co) serving as a bifunctional catalyst, which exhibits excellent OER and HER performance, as well as strong stability at various current densities.
More Carbon Nanotube News and Carbon Nanotube Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab