Nav: Home

Big Bang query: Mapping how a mysterious liquid became all matter

January 14, 2019

The leading theory about how the universe began is the Big Bang, which says that 14 billion years ago the universe existed as a singularity, a one-dimensional point, with a vast array of fundamental particles contained within it. Extremely high heat and energy caused it to inflate and then expand into the cosmos as we know it?and, the expansion continues to this day.

The initial result of the Big Bang was an intensely hot and energetic liquid that existed for mere microseconds that was around 10 billion degrees Fahrenheit (5.5 billion Celsius). This liquid contained nothing less than the building blocks of all matter. As the universe cooled, the particles decayed or combined giving rise to...well, everything.

Quark-gluon plasma (QGP) is the name for this mysterious substance so called because it was made up of quarks?the fundamental particles?and gluons, which physicist Rosi J. Reed describes as "what quarks use to talk to each other."

Scientists like Reed, an assistant professor in Lehigh University's Department of Physics whose research includes experimental high-energy physics, cannot go back in time to study how the Universe began. So they re-create the circumstances, by colliding heavy ions, such as Gold, at nearly the speed of light, generating an environment that is 100,000 times hotter than the interior of the sun. The collision mimics how quark-gluon plasma became matter after the Big Bang, but in reverse: the heat melts the ions' protons and neutrons, releasing the quarks and gluons hidden inside them.

There are currently only two operational accelerators in the world capable of colliding heavy ions?and only one in the U.S.: Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC). It is about a three-hour drive from Lehigh, in Long Island, New York.

Reed is part of the STAR Collaboration , an international group of scientists and engineers running experiments on the Solenoidal Tracker at RHIC (STAR). The STAR detector is massive and is actually made up of many detectors. It is as large as a house and weighs 1,200 tons. STAR's specialty is tracking the thousands of particles produced by each ion collision at RHIC in search of the signatures of quark-gluon plasma.

"When running experiments there are two 'knobs' we can change: the species?such as gold on gold or proton on proton?and the collision energy," says Reed. "We can accelerate the ions differently to achieve different energy-to-mass ratio."

Using the various STAR detectors, the team collides ions at different collision energies. The goal is to map quark-gluon plasma's phase diagram, or the different points of transition as the material changes under varying pressure and temperature conditions. Mapping quark-gluon plasma's phase diagram is also mapping the nuclear strong force, otherwise known as Quantum Chromodynamics (QCD), which is the force that holds positively charged protons together.

"There are a bunch of protons and neutrons in the center of an ion," explains Reed. "These are positively charged and should repel, but there's a 'strong force' that keeps them together? strong enough to overcome their tendency to come apart."

Understanding quark-gluon plasma's phase diagram, and the location and existence of the phase transition between the plasma and normal matter is of fundamental importance, says Reed.

"It's a unique opportunity to learn how one of the four fundamental forces of nature operates at temperature and energy densities similar to those that existed only microseconds after the Big Bang," says Reed.

Upgrading the RHIC detectors to better map the "strong force"

The STAR team uses a Beam Energy Scan (BES) to do the phase transition mapping. During the first part of the project, known as BES-I, the team collected observable evidence with "intriguing results." Reed presented these results at the 5th Joint Meeting of the APS Division of Nuclear Physics and the Physical Society of Japan in Hawaii in October 2018 in a talk titled: "Testing the quark-gluon plasma limits with energy and species scans at RHIC."

However, limited statistics, acceptance, and poor event plane resolution did not allow firm conclusions for a discovery. The second phase of the project, known as BES-II, is going forward and includes an improvement that Reed is working on with STAR team members: an upgrade of the Event Plan Detector. Collaborators include scientists at Brookhaven as well as at Ohio State University.

The STAR team plans to continue to run experiments and collect data in 2019 and 2020, using the new Event Plan Detector. According to Reed, the new detector is designed to precisely locate where the collision happens and will help characterize the collision, specifically how "head on" it is.

"It will also help improve the measurement capabilities of all the other detectors," says Reed.

The STAR collaboration expects to run their next experiments at RHIC in March 2019.
In addition to her involvement in STAR, Reed is also part of the sPHENIX Collaboration which will build a new detector at Brookhaven, which is anticipated to begin running in 2023.

The material Reed presented at the conference is based upon work supported by the National Science Foundation under Grant No. 1614474.

Lehigh University

Related Big Bang Articles:

'Big Food' companies have less power than you might think
A Dartmouth study finds that 'Big Food' companies are striving to make food more sustainable from farm to factory but have less power than you might think.
Looking for signs of the Big Bang in the desert
The Simons Observatory will be built in the Chilean Atacama desert for the purposes of studying primordial gravitational waves which originated in the first instants of the Big Bang.
More bang for the buck
Researchers find cost-effective solutions to sediment runoff and other land-based pollution affecting West Maui reefs
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
Can big data yield big ideas? Blend novel and familiar, new study finds
Struggling to get your creative juices flowing for a new idea or project?
Why big brains are rare
Do big-brained creatures steal energy for them from other organs or eat more to supply this expensive tissue?
New antimatter breakthrough to help illuminate mysteries of the Big Bang
Swansea University physicists working with an international collaborative team at CERN, conduct the first precision study of antihydrogen, the antimatter equivalent of hydrogen.
Big data for little creatures
A multi-disciplinary team of researchers at UC Riverside has received $3 million from the National Science Foundation Research Traineeship program to prepare the next generation of scientists and engineers who will learn how to exploit the power of big data to understand insects.
How we escaped from the Big Bang
A Griffith University physicist is challenging the conventional view of space and time to show how the world advances through time.
Big PanDA tackles big data for physics and other future extreme scale scientific applications
A team of physicists just received $2.1 million in funding for 2016-2017 from DOE's Advanced Scientific Computing Research program to enhance a 'workload management system' for handling the ever-increasing data demands of two experiments at the Large Hadron Collider and expanding its use as a general workload management service for a Department of Energy supercomputer.

Related Big Bang Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"