Nav: Home

Big Bang query: Mapping how a mysterious liquid became all matter

January 14, 2019

The leading theory about how the universe began is the Big Bang, which says that 14 billion years ago the universe existed as a singularity, a one-dimensional point, with a vast array of fundamental particles contained within it. Extremely high heat and energy caused it to inflate and then expand into the cosmos as we know it?and, the expansion continues to this day.

The initial result of the Big Bang was an intensely hot and energetic liquid that existed for mere microseconds that was around 10 billion degrees Fahrenheit (5.5 billion Celsius). This liquid contained nothing less than the building blocks of all matter. As the universe cooled, the particles decayed or combined giving rise to...well, everything.

Quark-gluon plasma (QGP) is the name for this mysterious substance so called because it was made up of quarks?the fundamental particles?and gluons, which physicist Rosi J. Reed describes as "what quarks use to talk to each other."

Scientists like Reed, an assistant professor in Lehigh University's Department of Physics whose research includes experimental high-energy physics, cannot go back in time to study how the Universe began. So they re-create the circumstances, by colliding heavy ions, such as Gold, at nearly the speed of light, generating an environment that is 100,000 times hotter than the interior of the sun. The collision mimics how quark-gluon plasma became matter after the Big Bang, but in reverse: the heat melts the ions' protons and neutrons, releasing the quarks and gluons hidden inside them.

There are currently only two operational accelerators in the world capable of colliding heavy ions?and only one in the U.S.: Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC). It is about a three-hour drive from Lehigh, in Long Island, New York.

Reed is part of the STAR Collaboration , an international group of scientists and engineers running experiments on the Solenoidal Tracker at RHIC (STAR). The STAR detector is massive and is actually made up of many detectors. It is as large as a house and weighs 1,200 tons. STAR's specialty is tracking the thousands of particles produced by each ion collision at RHIC in search of the signatures of quark-gluon plasma.

"When running experiments there are two 'knobs' we can change: the species?such as gold on gold or proton on proton?and the collision energy," says Reed. "We can accelerate the ions differently to achieve different energy-to-mass ratio."

Using the various STAR detectors, the team collides ions at different collision energies. The goal is to map quark-gluon plasma's phase diagram, or the different points of transition as the material changes under varying pressure and temperature conditions. Mapping quark-gluon plasma's phase diagram is also mapping the nuclear strong force, otherwise known as Quantum Chromodynamics (QCD), which is the force that holds positively charged protons together.

"There are a bunch of protons and neutrons in the center of an ion," explains Reed. "These are positively charged and should repel, but there's a 'strong force' that keeps them together? strong enough to overcome their tendency to come apart."

Understanding quark-gluon plasma's phase diagram, and the location and existence of the phase transition between the plasma and normal matter is of fundamental importance, says Reed.

"It's a unique opportunity to learn how one of the four fundamental forces of nature operates at temperature and energy densities similar to those that existed only microseconds after the Big Bang," says Reed.

Upgrading the RHIC detectors to better map the "strong force"

The STAR team uses a Beam Energy Scan (BES) to do the phase transition mapping. During the first part of the project, known as BES-I, the team collected observable evidence with "intriguing results." Reed presented these results at the 5th Joint Meeting of the APS Division of Nuclear Physics and the Physical Society of Japan in Hawaii in October 2018 in a talk titled: "Testing the quark-gluon plasma limits with energy and species scans at RHIC."

However, limited statistics, acceptance, and poor event plane resolution did not allow firm conclusions for a discovery. The second phase of the project, known as BES-II, is going forward and includes an improvement that Reed is working on with STAR team members: an upgrade of the Event Plan Detector. Collaborators include scientists at Brookhaven as well as at Ohio State University.

The STAR team plans to continue to run experiments and collect data in 2019 and 2020, using the new Event Plan Detector. According to Reed, the new detector is designed to precisely locate where the collision happens and will help characterize the collision, specifically how "head on" it is.

"It will also help improve the measurement capabilities of all the other detectors," says Reed.

The STAR collaboration expects to run their next experiments at RHIC in March 2019.
-end-
In addition to her involvement in STAR, Reed is also part of the sPHENIX Collaboration which will build a new detector at Brookhaven, which is anticipated to begin running in 2023.

The material Reed presented at the conference is based upon work supported by the National Science Foundation under Grant No. 1614474.

Lehigh University

Related Big Bang Articles:

Big brains or big guts: Choose one
A global study comparing 2,062 birds finds that, in highly variable environments, birds tend to have either larger or smaller brains relative to their body size.
Dark matter may be older than the big bang, study suggests
Dark matter, which researchers believe make up about 80% of the universe's mass, is one of the most elusive mysteries in modern physics.
Cincinnati researchers say early puberty in girls may be 'big bang theory' for migraine
Adolescent girls who reach puberty at an earlier age may also have a greater chance of developing migraine headaches, according to new research from investigators at the University of Cincinnati (UC) College of Medicine.
More bang for the climate buck: study identifies hotspots for adaptation funding
Using a combination of crop models and expertise from farmers and others -- and applying them to our current trajectory of high greenhouse gas emissions -- scientists built a tool to assess climate risk vulnerability to help pinpoint communities in need of support for adaptation and mitigation.
Big data takes aim at a big human problem
A James Cook University scientist is part of an international team that's used new 'big data' analysis to achieve a major advance in understanding neurological disorders such as Epilepsy, Alzheimer's and Parkinson's disease.
Big Bang query: Mapping how a mysterious liquid became all matter
Lehigh University's Rosi Reed presents findings from new Beam Energy Scan at Brookhaven National Lab's Relativistic Heavy Ion Collider that tests the limits of quark-gluon plasma (QGP), the mysterious liquid thought to have existed in the micro-seconds after the Big Bang
Fossil from the Big Bang discovered with W. M. Keck Observatory
A relic cloud of gas, orphaned after the Big Bang, has been discovered in the distant universe by astronomers using the world's most powerful optical telescope, the W.
A bigger nose, a bigger bang: Size matters for ecoholocating toothed whales
A new study sheds light on how toothed whales adapted their sonar abilities to occupy different environments.
Johns Hopkins scientist finds elusive star with origins close to Big Bang
Astronomers have found what could be one of the universe's oldest stars, made almost entirely of materials spewed from the Big Bang.
The 'Big Bang' of Alzheimer's: Scientists ID genesis of disease
Scientists have discovered a ''Big Bang'' of Alzheimer's disease - the precise point at which a healthy protein becomes toxic but has not yet formed deadly tangles in the brain.
More Big Bang News and Big Bang Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.