Discovery casts doubt on cell surface organization models L

January 14, 2019

Like planets, the body's cell surfaces look smooth from a distance but hilly closer up. An article published in Communications Biology describes implications, unknown to date, of the way data from cell surfaces are normally interpreted; i.e. as if they lacked topographic features.

When Earth is studied from space, its surface looks smooth, but on zooming in we notice the mountains and valleys. The same applies to cells; without magnification they look smooth, but a closer look reveals both ridges and craters.

Researchers from the Universities of Gothenburg and Uppsala, Sweden, studied how this variation in cell topography affects "diffusion" -- how molecules move in the cell membrane. Diffusion is studied to develop models for the membrane's organization and to increase our understanding on the interaction between cell components.

The basis for the researchers' study was their previous discoveries. These showed that not a single one of 70 cell types studied has a smooth surface.

"Today's dominant models of how the plasma membrane that surrounds the cell is organized are based on two-dimensional interpretation of measurement data. Our study shows that this leads to completely incorrect conclusions, since the cell surface is three-dimensional," says Ingela Parmryd, Senior Lecturer in Cell Biology at Sahlgrenska Academy, University of Gothenburg, the lead author of the article.

In studies of molecular movements, the cell topography can cause both marked underestimation of movement in the membrane and deviant movement patterns. This is shown in the present study, which is groundbreaking in its field.

"The goal of our research is to take the great leap forward from current two-dimensional to three-dimensional membrane models. This is going to change the way we perceive fundamental biological processes like cell signaling, cell-to-cell contacts and cell migration -- processes that change in pathological states, such as cancer," Ingela Parmryd says.
-end-
Title: Conventional analysis of movement on non-flat surfaces like the plasma membrane makes Brownian motion appear anomalous; https://www.nature.com/articles/s42003-018-0240-2

Title (earlier study): Plasma membrane topography and interpretation of single-particle tracks; https://www.nature.com/articles/nmeth0310-170

University of Gothenburg

Related Cell Biology Articles from Brightsurf:

Deep learning on cell signaling networks establishes AI for single-cell biology
Researchers at CeMM have developed knowledge-primed neural networks (KPNNs), a new method that combines the power of deep learning with the interpretability of biological network models.

RNA biology provides the key to cell identity and health
Two papers in Genome Research by the FANTOM Consortium have provided new insights into the core regulatory networks governing cell types in different vertebrate species, and the role of RNA as regulators of cell function and identity.

Cell biology: Your number's up!
mRNAs program the synthesis of proteins in cells, and their functional lifetimes are dynamically regulated.

Cell biology -- maintaining mitochondrial resilience
Mitochondria cannot autonomously cope with stress and must instead call on the cell for help.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Cell-free synthetic biology comes of age
In a review paper published in Nature Reviews Genetics, Professor Michael Jewett explores how cell-free gene expression stands to help the field of synthetic biology dramatically impact society, from the environment to medicine to education.

Scientists develop electrochemical platform for cell-free synthetic biology
Scientists at the University of Toronto (U of T) and Arizona State University (ASU) have developed the first direct gene circuit to electrode interface by combining cell-free synthetic biology with state-of-the-art nanostructured electrodes.

In a first for cell biology, scientists observe ribosome assembly in real time
A team of scientists from Scripps Research and Stanford University has recorded in real time a key step in the assembly of ribosomes -- the complex and evolutionarily ancient 'molecular machines' that make proteins in cells and are essential for all life forms.

Cell biology: Endocannabinoid system may be involved in human testis physiology
The endocannabinoid system (ECS) may be directly involved in the regulation of the physiology of the human testis, including the development of sperm cells, according to a study in tissue samples from 15 patients published in Scientific Reports.

Read More: Cell Biology News and Cell Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.