Nav: Home

Team finds how error and reward signals are organized within the cerebral cortex

January 14, 2019

Psychiatrists diagnose people with schizophrenia, ADHD, bipolar disorder and other mental illnesses by spending time with them, looking for the particular behavior symptoms of each. What follows can be a hit-or-miss series of medications and dosages until disruptive behaviors go away.

By deciphering the circuitry of the medial frontal cortex - an area beneath the top of the head -- those diagnoses could become much more efficient and precise by allowing physicians to diagnose based on how neurons respond to a simple series of behavior tests.

A Vanderbilt University team recently described how error and reward signals are organized within the cerebral cortex, which is only as thick as a nickel. They say this information could also be significant in drug development by guiding medications to target receptors in particular layers of the cerebral cortex where they will be most effective.

In a paper titled "Cortical Microcircuitry of Performance Monitoring," their findings were published today in the journal Nature Neuroscience.

Jeffrey Schall, E. Bronson Ingram Professor of Neuroscience, said these new findings stem from earlier discoveries of a brainwave signal, recorded from the surface of the head, known as error-related negativity. It is observed following a mistake that allows people to correct their behavior. Schall's laboratory subsequently discovered two "oops centers" in the cerebral cortex, sources in the brain producing similar error signals.

A combination of data from EEG sensors on the cranial surface and a specialized sensor embedded across the layers of the cerebral cortex reveals how neurons contribute to the brainwaves, said Amirsaman Sajad, a postdoctoral fellow. Sajad explained that the natural variation of the error brainwave signal was predicted by natural variation of the brain cell signals in the upper half of the cortical area.

With the team having verified generators of the error signal, he explained, further research is needed to determine what each generator contributes.

"Neurons in the upper layers predict whether you will slow down after an 'oops' and then speed up after you have some success," Sajad said.

Beyond clear clinical relevance, these insights also offer deeper insights into how the brain produces organized, voluntary behavior, Schall said.

"Each area of the cerebral cortex has a unique structure and pattern of connections, but there was a belief that the circuitry was just a variation on a common theme. In this research we found that even the theme was different. We knew the error brainwave is abnormal in schizophrenics. But why? We couldn't answer this until we knew how the neurons were working," he said.
-end-


Vanderbilt University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...