Nav: Home

DNA origami: A precise measuring tool for optimal antibody effectiveness

January 14, 2019

Using DNA origami - DNA-based design of precise nanostructures - scientists at Karolinska Institutet, Sweden, in collaboration with researchers at University of Oslo, Norway, have been able to demonstrate the most accurate distance between densely packed antigens in order to get the strongest bond to antibodies in the immune system. The study, which is published in the journal Nature Nanotechnology, may be of significance to the development of vaccines and immunotherapy used in cancer.

Vaccines work by training the immune system with harmless mixtures of antigens (foreign substances that trigger a reaction in the immune system), from a virus, for example. When the body is then exposed to the virus, the immune system recognises the antigens that the virus carries and is able to effectively prevent an infection.

Today, many new vaccines make use of something called "particle display", which means that the antigens are introduced into the body/presented to the immune system in the form of particles with lots of antigens densely packed on the surface. Particle display of antigens works in some cases better as a vaccine than simply providing free antigens and one example is the HPV vaccine, which protects against cervical cancer.

Antibodies, or immunoglobulins, perhaps the most important part of the body's defence against infection, bind antigens very effectively. The antibodies have a Y-shaped structure where each "arm" can bind an antigen. In this way, each antibody molecule can usually bind two antigen molecules.

In the current study, the researchers examined how closely and how far apart from each other the antigens can be packed without significantly affecting the ability of an antibody to bind both molecules simultaneously.

"We have for the first time been able to accurately measure the distances between antigens that result in the best simultaneous binding of both arms of different antibodies. Distances of approximately 16 nanometres provide the strongest bond", says Björn Högberg, professor at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, who led the study.

The study also shows that immunoglobulin M (IgM), the first antibody involved in an infection, is significantly larger reach, that is the ability to bind two antigens, than previously thought. IgM also has a significantly greater reach than the IgG antibodies produced at a later stage of an infection.

The technology the scientists used is based on a relatively new technique known as DNA origami, which has been in use since 2006, that allows precise nanostructures to be designed using DNA. However, it is only in recent years that scientists have learned to use this technique in biological research. The application used in the study is newly developed.

"By putting antigens on these DNA origami structures, we can manufacture surfaces with precise distances between the antigens and then measure how different types of antibodies bind to them. Now we can measure exactly how antibodies interact with several antigens in a manner that was previously impossible", says Björn Högberg.

The results can be used to better understand the immune response, for example why B lymphocytes, a type of white blood cell, are so effectively activated by particle display vaccines, and to design better antibodies for immunotherapy when treating cancer.

The research has been conducted in close collaboration with the Laboratory of adaptive immunity and homeostasis led by Jan Terje Anderson, at the University of Oslo and Oslo University Hospital.

"We study the relationship between the structure and function of antibodies. Such insight is important when we design the next generation of vaccines and antibodies for tailor-made treatment of serious diseases. We have long been looking for new methods that can help us get detailed insight into how different antibodies bind to the antigens. The collaboration with Björn Högberg has opened completely new doors," says Jan Terje Andersen.
-end-
The study was funded by the Swedish Research Council, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation, the StratRegen/Karolinska Institutet and the Research Council of Norway.

Publication: "Binding to Nanopatterned antigens is Dominated by the Spatial Tolerance of antibodies"

Alan Shaw, Ian T Hoffecker, Ioanna Smyrlaki, Joao Rosa, Algridas Grevys, Diane Bratlie, Inger Sandlie, Terje Enar Michaelsen, Jan Terje Andersen and Björn Högberg.

Nature Nanotechnology, online 14 January 2019, doi: 10.1038/s41565-018-0336-3.

Karolinska Institutet

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.