Nav: Home

Researchers report breakthrough in ice-repelling materials

January 14, 2019

Icy weather is blamed for multibillion dollar losses every year in the United States, including delays and damage related to air travel, infrastructure and power generation and transmission facilities. Finding effective, durable and environmentally stable de-icing materials has been stymied by the stubborn tenacity with which ice adheres to the materials on which it forms.

Researchers from the University of Houston have reported a new theory in physics called stress localization, which they used to tune and predict the properties of new materials. Based on those predictions, the researchers reported in Materials Horizons that they have created a durable silicone polymer coating capable of repelling ice from any surface.

"We have developed a new physical concept and the corresponding icephobic material that shows extremely low ice adhesion while having long-term mechanical, chemical and environmental durability," they wrote.

Hadi Ghasemi, Bill D. Cook Assistant Professor of mechanical engineering at UH and corresponding author for the work, said the findings suggest a way to take trial and error out of the search for new materials, in keeping with the movement of materials science toward a physics-driven approach.

"You put in the properties you want, and the principle will tell you what material you need to synthesize," he said, noting that the concept can also be used to predict materials with superb antibacterial or other desirable properties.

His collaborators on the project include Payman Irajizad, Abdullah Al-Bayati, Bahareh Eslami, Taha Shafquat, Masoumeh Nazari, Parham Jafari, Varun Kashyap and Ali Masoudi, all with the UH Department of Mechanical Engineering, and Daniel Araya, a former UH faculty member who is now at the Johns Hopkins University Applied Physics Laboratory.

Ghasemi previously has reported developing several new icephobic materials, but he said those, like other existing materials, haven't been able to completely overcome the problem of ice adhering to the surface, along with issues of mechanical and environmental durability. The new understanding of stress localization allows the new material to avoid that, he said.

The new material uses elastic energy localization where ice meets the material, triggering cracks at the interface that slough off the ice. Ghasemi said it requires minimal force to cause the cracks; the flow of air over the surface of an airplane acts as a trigger, for example.

The material, which is applied as a spray, can be used on any surface, and Ghasemi said testing showed it is not only mechanically durable and unaffected by ultraviolet rays - important for aircraft which face constant sun exposure - but also does not change the aircraft's aerodynamic performance. Testing indicates it will last for more than 10 years, with no need to reapply, he said.
-end-


University of Houston

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...