Nav: Home

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia

January 14, 2020

A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

For decades, scientists have suspected that the brain had a way of monitoring and regulating its own blood flow separate from the body-wide blood pressure control system, but until now no one had proven this.

The brain needs more blood than any other organ to satisfy neurons' relentless, high demand for oxygen, so it makes sense that it would have a way of buffering itself from blood flow fluctuations in the wider body. Disturbances to brain blood flow are a known cause in many diseases - for example, sustained reduction in brain blood flow is a likely cause of cognitive decline, dementia, and neurodegenerative disease such as Alzheimer's disease.

In a study published in Nature Communications, researchers from UCL, the University of Auckland and Bristol University, found a new function for the star-shaped brain glial cells, known as astrocytes. These cells function as specialised brain blood flow sensors that operate to self-protect the brain from potentially damaging reductions in blood supply.

Astrocytes are strategically positioned between the brain blood vessels and important nerve cells, which control the heart and peripheral circulation, ultimately determining the arterial blood pressure.

In the laboratory-based study in rats, the researchers found that decreases in brain blood flow caused astrocytes to release a chemical signal, which stimulated the specialised nerve cells to increase blood pressure and restore/maintain blood flow (and oxygen supply) to the brain.

Professor Alexander Gourine (UCL Division of Biosciences), who led the study, said: "We are very excited about this observation: there has never been a formal description of a blood flow or blood pressure sensor within the brain before.

"Our new data identify astrocytes as brain blood flow sensors that are critically important for setting the level of systemic (arterial) blood pressure and in doing so ensure that the brain receives a sufficient amount of oxygen and nutrients to support the uninterrupted operation of the information processing machinery."

Co-author Professor Julian Paton, (University of Auckland), said: "These astrocyte cells are exquisitely sensitive to reductions in brain blood flow. When blood supply is reduced, they release a chemical signal to nearby nerve cells that raise blood pressure, restoring blood flow to the brain. What we have discovered is that the brain has an automatic way to make sure that brain blood flow is preserved.

"Unfortunately, in pathological conditions this is happening at the expense of generating higher blood pressure in the rest of the body. This suggests that increasing brain blood flow by reducing activity in these blood flow sensing astrocytes may be a way to lower blood pressure in people with hypertension. It may also be a way to combat migraines and strokes. On the other hand, sensitising these cells may help in conditions of dementia to improve brain blood flow."

Corresponding author, Dr Nephtali Marina-Gonzalez, (UCL Division of Medicine), said: "In disease situations where blood supply to the brain is reduced, the mechanisms we describe can over-react causing migraines, high blood pressure and strokes. The identity of the brain blood flow sensor will make it possible to search for novel targeted treatment strategies to alleviate these diseases".
-end-
The study was supported by funding from Wellcome, the British Heart Foundation and in part the Health Research Council of New Zealand.

University College London

Related Blood Pressure Articles:

Effect of reducing blood pressure medications on blood pressure control in older adults
Whether the amount of blood pressure medications taken by older adults could be reduced safely and without a significant change in short-term blood pressure control was the objective of this randomized clinical trial that included 534 adults 80 and older.
Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.
Here's something that will raise your blood pressure
The apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels involved in blood pressure regulation.
New strategy for treating high blood pressure
The key to treating blood pressure might lie in people who are 'resistant' to developing high blood pressure even when they eat high salt diets, shows new research published today in Experimental Physiology.
Arm cuff blood pressure measurements may fall short for predicting heart disease risk in some people with resistant high blood pressure
A measurement of central blood pressure in people with difficult-to-treat high blood pressure could help reduce risk of heart disease better than traditional arm cuff readings for some patients, according to preliminary research presented at the American Heart Association's Hypertension 2019 Scientific Sessions.
Heating pads may lower blood pressure in people with high blood pressure when lying down
In people with supine hypertension due to autonomic failure, a condition that increases blood pressure when lying down, overnight heat therapy significantly decreased systolic blood pressure compared to a placebo.
The Lancet Neurology: High blood pressure and rising blood pressure between ages 36-53 are associated with smaller brain volume and white matter lesions in later years
A study of the world's oldest, continuously-studied birth cohort tracked blood pressure from early adulthood through to late life and explored its influence on brain pathologies detected using brain scanning in their early 70s.
Blood pressure control is beneficial, is it not?
Until recently, physicians had generally assumed that older adults benefit from keeping their blood pressure below 140/90 mmHg.
The 'blue' in blueberries can help lower blood pressure
A new study published in the Journal of Gerontology Series A has found that eating 200g of blueberries every day for a month can lead to an improvement in blood vessel function and a decrease in systolic blood pressure in healthy people.
Discovery could advance blood pressure treatments
A team of Vanderbilt University Medical Center researchers, working with the US Department of Veteran's Affairs (VA), has discovered genetic associations with blood pressure that could guide future treatments for patients with hypertension.
More Blood Pressure News and Blood Pressure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.