Sand mining is threatening lives along the Mekong River

January 14, 2020

It's a resource used in global construction and mined from rivers and coasts across the world.

Now new research, undertaken as part of a project led by University of Southampton, has shown sand mining is causing river beds to lower, leading to riverbank instability and increasing the likelihood of dangerous river bank collapse, damaging infrastructure and housing and putting lives at risk.

The new research has been published in the journal Nature Sustainability.

Researchers focused on the Mekong River - one of the world's major sand-bedded rivers - in Cambodia.

Dr Chris Hackney at the University of Hull who led the research, said: "With the world currently undergoing rapid population growth and urbanisation, concrete production has grown massively, fuelling unprecedented demand for sand, so much so that sand is now the most consumed resource on the planet, after water"

The research was undertaken as part of a NERC funded project led by Professor Stephen Darby at the University of Southampton, which is studying the impact of climate change on the fluctuation of sediment through the Mekong.

Professor Darby added, "Much of the sand used in the production of concrete comes from the world's big sand-bedded rivers, like the Mekong. There has long been a concern that sand mining from the Mekong is causing serious problems, but our work is the first to provide a comprehensive, rigorous, estimate not only of the rate at which sand is being removed from the system but how this compares to the natural replenishment of sand by river processes, as well as the adverse impacts unsustainable sand mining has on river bank erosion."

In the study, the team, which also included researchers from the Universities of Exeter and Illinois, used sonar surveys to measure how much sand is transported through the Mekong, either in the water column, or on the river bed. The sonar surveys also revealed how much sand is being taken by sand miners; the sonar images show giant holes 42 metres in length and eight metres deep on the river bed as a result of sand being removed from the Mekong. By comparing the natural sand transport rates with the estimates of sand extraction, the team estimated that sand is being removed from the Mekong at a rate that is between five and nine times more than the rate at which sand is replenished by the river's natural sand transport processes.

Using measurements of the shape of the river banks made by a Terrestrial Laser Scanner, the team were then able to analyse the extent to which the lowering of the river bed increases the risk of dangerous river bank collapses.

Dr Julian Leyland of the University of Southampton, who performed the TLS surveys, said that "Our research showed that it only takes two metres of lowering of the river bed to cause many of the river banks along the Mekong to collapse, but we've seen that dredging pits can often exceed eight metres in depth. It's clear that excessive sand mining is responsible for increased rates of bank erosion that local communities have been reporting in recent years."

Dr Hackney warns that without proper regulation, excessive sand mining on the Mekong and other major rivers worldwide could have increasing environmental and social consequences.

He said: "We are seeing the profound effects that excessive sand mining is having on rivers, coasts and seas. We need much stronger regulation of unfettered sand mining to avoid the dangers that river side communities are facing."
-end-
Notes to editors

For further information and interview requests please contact Steve Bates, Media Relations Officer, University of Southampton; 02380 593212 / 07342 060429, s.d.bates@soton.ac.uk

The paper has been published in Nature Sustainability with DOI 10.1038/s41893-019-0455-3.

The research was undertaken as part of the NERC funded Stelar-S2S project led by Professor Darby.

The University of Southampton drives original thinking, turns knowledge into action and impact, and creates solutions to the world's challenges. We are among the top 100 institutions globally (QS World University Rankings 2019). Our academics are leaders in their fields, forging links with high-profile international businesses and organisations, and inspiring a 24,000-strong community of exceptional students, from over 135 countries worldwide. Through our high-quality education, the University helps students on a journey of discovery to realise their potential and join our global network of over 200,000 alumni. http://www.southampton.ac.uk

University of Southampton

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.