Nav: Home

X-rays and gravitational waves will combine to illuminate massive black hole collisions

January 14, 2020

A new study by a group of researchers at the University of Birmingham has found that collisions of supermassive black holes may be simultaneously observable in both gravitational waves and X-rays at the beginning of the next decade.

The European Space Agency (ESA) has recently announced that its two major space observatories of the 2030s will have their launches timed for simultaneous use. These missions, Athena, the next generation X-ray space telescope and LISA, the first space-based gravitational wave observatory, will be coordinated to begin observing within a year of each other and are likely to have at least four years of overlapping science operations.

According to the new study, published this week in Nature Astronomy, ESA's decision will give astronomers an unprecedented opportunity to produce multi-messenger maps of some of the most violent cosmic events in the Universe, which have not been observed so far and which lie at the heart of long-standing mysteries surrounding the evolution of the Universe.

They include the collision of supermassive black holes in the core of galaxies in the distant universe and the "swallowing up" of stellar compact objects such as neutron stars and black holes by massive black holes harboured in the centres of most galaxies.

The gravitational waves measured by LISA will pinpoint the ripples of space time that the mergers cause while the X-rays observed with Athena reveal the hot and highly energetic physical processes in that environment. Combining these two messengers to observe the same phenomenon in these systems would bring a huge leap in our understanding of how massive black holes and galaxies co-evolve, how massive black holes grow their mass and accrete, and the role of gas around these black holes.

These are some of the big unanswered questions in astrophysics that have puzzled scientists for decades.

Dr Sean McGee, Lecturer in Astrophysics at the University of Birmingham and a member of both the Athena and LISA consortiums, led the study. He said, "The prospect of simultaneous observations of these events is uncharted territory, and could lead to huge advances. This promises to be a revolution in our understanding of supermassive black holes and how they growth within galaxies."

Professor Alberto Vecchio, Director of the Institute for Gravitational Wave Astronomy, University of Birmingham, and a co-author on the study, said: "I have worked on LISA for twenty years and the prospect of combining forces with the most powerful X-ray eyes ever designed to look right at the centre of galaxies promises to make this long haul even more rewarding. It is difficult to predict exactly what we're going to discover: we should just buckle up, because it is going to be quite a ride".

During the life of the missions, there may be as many as 10 mergers of black holes with masses of 100,000 to 10,000,000 times the mass of the sun that have signals strong enough to be observed by both observatories. Although due to our current lack of understanding of the physics occurring during these mergers and how frequently they occur, the observatories could observe many more or many fewer of these events. Indeed, these are questions which will be answered by the observations.

In addition, LISA will detect the early stages of stellar mass black holes mergers which will conclude with the detection in ground based gravitational wave observatories. This early detection will allow Athena to be observing the binary location at the precise moment the merger will occur.
-end-
Notes to editor:

  • The University of Birmingham is ranked amongst the world's top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 6,500 international students from over 150 countries.
  • McGee et al (2020). 'Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations'. Nature Astronomy.


University of Birmingham

Related Black Holes Articles:

Staining cycles with black holes
In the treatment of tumors, microenvironment plays an important role.
Black holes sometimes behave like conventional quantum systems
A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries.
Scientists may have discovered whole new class of black holes
New research shows that astronomers' search for black holes might have been missing an entire class of black holes that they didn't know existed.
Growing old together: A sharper look at black holes and their host galaxies
The 'special relationship' between supermassive black holes (SMBHs) and their hosts -- something astronomers and physicists have observed for quite a while -- can now be understood as a bond that begins early in a galaxy's formation and has a say in how both the galaxy and the SMBH at its center grow over time, according to a new study from Yale University.
Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.
Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.
Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
The orderly chaos of black holes
During the formation of a black hole a bright burst of very energetic light in the form of gamma-rays is produced, these events are called gamma-ray bursts.
Mystery of coronae around supermassive black holes deepens
Researchers have used observations from the ALMA radio observatory to measure, for the first time, the strength of magnetic fields near two supermassive black holes at the centers of an important type of active galaxies.
More Black Holes News and Black Holes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.