Nav: Home

Study weighs deep-sea mining's impact on microbes

January 14, 2020

The essential roles that microbes play in deep-sea ecosystems are at risk from the potential environmental impacts of mining, a new paper in Limnology and Oceanography reports. The study reviews what is known about microbes in these environments and assesses how mining could impact their important environmental roles.

"The push for deep-sea mining has really accelerated in the last few years, and it is crucial that policy makers and the industry understand these microbes and the services they provide," said Beth Orcutt, a senior research scientist at Bigelow Laboratory for Ocean Sciences and the lead author of the study. "This paper establishes what we know and suggests next steps for using the best science to evaluate the impacts of this new human activity in the deep sea."

Microbes across the seafloor are responsible for essential ecosystem services, from fueling the food web to powering global nutrient cycles. Environments that are promising for mining are also often the sites of globally-important microbial processes and unusual animal communities - and they are very slow to recover from disturbance.

Orcutt and her coauthors analyzed four types of deep-sea mineral resources, including the metal-rich rocks that stud underwater mountains and lie on the seafloor. Their findings indicate that the likely impacts of mining on microbial ecosystems vary substantially, from minimal disturbance to the irreversible loss of important ecosystem processes.

Hydrothermal vent systems, for example, are particularly sensitive - and valuable. The hot, mineral-rich waters support robust communities of microbes that form the vital base of the food web in these ecosystems. The extreme environmental conditions also foster rich genetic diversity among the microbes, making them promising candidates in the search for anti-cancer drugs and other new biotechnology applications.

"These microbes have incredible potential to inspire new solutions to all sorts of medical and technical challenges we face today," said Julie Huber, a scientist from the Woods Hole Oceanographic Institution and co-author of the new study. "But if we damage or destroy a habitat like a hydrothermal vent, we lose the diverse the pool of microbial genetic information from which we can find new enzymes or drugs."

Consumer demand for products like smartphones and electric cars is driving the rapidly growing interest in deep-sea mining for metals like cobalt and rare earth elements, which are used in lithium-ion batteries. The International Seabed Authority of the United Nations is working to establish guidelines for countries and contractors to explore the seafloor for minerals, and to eventually mine them.

While guidelines for licensed exploration already suggest that site assessments should include how much microbial life is present, the researchers on the new study emphasize that it is equally important to determine what roles the microbes are playing and assess how they would be impacted by mining.

"It is important to understand the potential impacts of mining activities to figure out if they should occur and how to manage them if they do," said James Bradley, a scientist at Queen Mary University of London and co-author on the paper. "This is an important conversation between policy makers, industry, and the scientific community, and it's important that we work together to get this right. Once these ecosystems are damaged, they may never fully recover."
-end-
This study was supported by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) and the Sloan Foundation-funded Deep Carbon Observatory.

Bigelow Laboratory for Ocean Sciences is an independent, nonprofit research institute located in East Boothbay, Maine. From the Arctic to the Antarctic, Bigelow Laboratory scientists use cutting-edge techniques to understand the ocean's mysteries, address its challenges, and unlock its hidden opportunities. Learn more at bigelow.org, and join the conversation on Facebook, Instagram, and Twitter.

Bigelow Laboratory for Ocean Sciences

Related Microbes Articles:

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.
Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.
Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.
Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.
Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.
Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.
Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.
Microbes help make the coffee
When it comes to processing coffee beans, longer fermentation times can result in better taste, contrary to conventional wisdom.
Space microbes aren't so alien after all
A new Northwestern University study has found that -- despite its seemingly harsh conditions -- the ISS is not causing bacteria to mutate into dangerous, antibiotic-resistant superbugs.
Nutrient-recycling microbes may feel the heat
While microbial communities are the engines driving the breakdown of dead plants and animals, little is known about whether they are equipped to handle big changes in climate.
More Microbes News and Microbes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.