USTC makes security analysis and improvement of quantum random number generation

January 14, 2021

Recently, the research team led by academician GUO Guangcan from the University of Science and Technology of China of the Chinese Academy of Sciences has made security analysis and improvement of source independent quantum random number generators with imperfect devices.

By studying the actual characteristics of the measurement devices of the source-independent quantum random number generation, the researchers pointed out that the security issues were caused by afterpulse, detection efficiency mismatching, poor sensitivity to photon number distribution in measurement devices, etc., and gave the corresponding solutions. The study was published in npj Quantum Information.

The source-independent quantum random number generation protocol is a new quantum random number protocol proposed in 2016. This protocol can generate secure random numbers under the condition that the light source is completely untrusted by monitoring the error code of the mutual unbiased basis corresponding to the base of the random number generation. It can simultaneously meet the requirements of security and high rate of random number generator, and has a very high devices loss tolerance.

However, the protocol has some security problems, such as the failure to consider the afterpulse problem of the detector, the mismatch of detection efficiency, the poor sensitivity of the detector to the distribution of light source and other characteristics, which impedes the application of this protocol.

In this study, the researchers presented a detector model containing these actual parameters, and then evaluated the impact of these problems on actual security. At the same time, aiming at the afterpulse problem, they gave the security random number information upper bound with the existence of eavesdropping.

To solve the problem of detection efficiency mismatch and poor detector sensitivity to the distribution of light source, the researchers proposed a method for monitoring the distribution of light source, and gave a bit rate formula based on the composable security with full consideration to the finite length effect.

This study has quantitatively analyzed the security problem caused by imperfect measurement devices in source-independent quantum random number systems and given the corresponding solutions, which provides an important theoretical support for the realization of ultra-fast commercial source-independent quantum random number generator.

University of Science and Technology of China

Related Light Source Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

New 'super light source' should allow fascinating insights into atoms
The 'Gamma Factory initiative' -- an international team of scientists -- is currently exploring a novel research tool: They propose to develop a source of high-intensity gamma rays using the existing accelerator facilities at CERN.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

Catching light: How cobalt can help utilize visible light to power hydrogen production from water
Scientists at Tokyo Tech demonstrate the first visible-light photoelectrochemical system for water splitting using TiO2 enhanced with an earth-abundant material -- cobalt.

Light-up wheels: Unique organic light-emitting molecular emitters
Researchers at Osaka University synthesized novel OLEDs based on efficient ring-shaped molecular macrocycles.

On-chip light source produces versatile range of wavelengths
Researchers have designed a new chip-integrated light source that can transform infrared wavelengths into visible wavelengths, which have been difficult to produce with technology based on silicon chips.

Machine learning enhances light-beam performance at the advanced light source
A team of researchers at Berkeley Lab and UC Berkeley has successfully demonstrated how machine-learning tools can improve the stability of light beams' size for science experiments at a synchrotron light source via adjustments that largely cancel out unwanted fluctuations.

Extracting hidden quantum information from a light source
Researchers report on a technique to extract the quantum information hidden in an image that carries both classical and quantum information.

Read More: Light Source News and Light Source Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to