Bladder cancer -- When to use chemotherapy

January 14, 2021

In patients with bladder cancer, chemotherapy effectiveness is partially determined by the body's immune system response to the malignancy. This is the conclusion of research conducted by a team of scientists from Charité - Universitätsmedizin Berlin and the Berlin Institute of Health. The findings, which have been published in Science Translational Medicine*, can be used to predict treatment success and may increase survival in patients with bladder cancer.

Bladder cancer is one of the ten most common types of cancer in Germany, and one of the five most common cancers in men. Nationwide, the disease affects approximately 30,000 people a year. The risk of the cancer spreading (metastasizing) is particularly high once it invades the muscle layer inside the bladder wall. In patients with non-metastatic muscle-invasive bladder cancer, treatment usually consists of the surgical removal of the bladder. According to current professional guidelines, patients must undergo chemotherapy prior to surgery; they receive drugs which will target the cancer's fast-growing cells. The aim of this 'neoadjuvant' chemotherapy is to shrink the tumor prior to surgery in order to reduce the risk of recurrence and/or metastases. However, in more than fifty percent of patients, chemotherapy will not shrink the tumor. Not only do these people not benefit from neoadjuvant chemotherapy, they are losing valuable time - time during which the cancer can continue to grow and metastasize.

An international team of researchers led by Dr. Michael Schmück-Henneresse, a scientist at the Berlin Institute of Health Center for Regenerative Therapies (BCRT) as well as Charité's Institute of Medical Immunology and the Berlin Center for Advanced Therapies (BeCAT), has discovered a way to differentiate between patients who will benefit from chemotherapy and those who will not. The status of the patients' immune systems before the start of treatment was found to hold the key. Subsequent chemotherapy only proved effective if the cancerous tissue contained large quantities of two specific immune system components known as CXCL11 and CXCR3alt. "The process of measuring these two components in the laboratory is relatively straightforward and only requires the biopsy sample which is collected in order to diagnose the cancer," says Dr. Schmück-Henneresse. "This technologically simple method will make it possible to predict the likelihood of chemotherapy success in a specific patient at the point of diagnosis. If neoadjuvant chemotherapy is unlikely to be successful, one could dispense with this therapy altogether and directly move to the bladder cancer's surgical removal. This type of personalized approach would not only spare patients the side effects of an ineffective treatment, it would probably increase their chances of survival. However, our results will need to be confirmed by further, independent studies before we can get to a stage where CXCL11 and CXCR3alt measurements become standard in patients with bladder cancer."

As part of this research, the team studied tumor samples from 20 patients with muscle-invasive bladder cancer who had completed their chemotherapy treatment at Umeå University in Sweden. Dating back to before the start of treatment, the samples had been collected by Dr. Amir Sherif and his team during diagnostic cytoscopy procedures. The research group identified which immunological messengers were present in the biopsy tissue and which receptors (effectively the 'recipients' of these messengers) the immune cells inside the tumors were producing. For each of the components identified, they then tested whether there was a link between the quantities at which these were present and treatment success. Results confirmed this was the case for both the messenger substance CXCL11 and the receptor CXCR3alt. Chemotherapy only had an effect if the immune cell attractant CXCL11 was present at particularly high levels inside the tumor tissue and if specific immune system cells known as T cells produced the corresponding CXCR3alt receptor. The team subsequently examined their observations using existing data from 'The Cancer Genome Atlas'. Their comparison confirmed that, out of a total of 68 patients with bladder cancer who had received chemotherapy, patients whose tumor tissue contained large quantities of CXCL11 were more likely to survive.

"The signaling molecule CXCL11 attracts specific T cells into the tumor tissue, where it prompts them to proliferate and fight the cancer," explains the study's first author, Tino Vollmer, a doctoral student at Charité's Institute of Medical Immunology and scientist at the BCRT and BeCAT. "Chemotherapy appears to support the body's own fight against the tumor, possibly because the resulting degradation of cancerous tissue makes it easier for T cells to invade it." The immune system's effect on treatment outcome directly contradicts established scientific consensus, which posits that the effect of chemotherapy drugs is solely due to the ability of cancer cells to divide and replicate. "Along with other studies, our research demonstrates the importance of the immune system's active involvement in fighting the tumor," says Vollmer.

As a next step, the researchers plan to study whether cell therapy could be used to activate the T cells of patients whose immune systems show a weak response to their bladder cancer. To do this, the team wants to harvest T cells from affected patients, fit them with synthetic CXCR3alt receptors in the laboratory, and then reintroduce them into these patients. The researchers will also study the same approach in relation to the treatment of other cancers. Furthermore, they plan to advance the use of personalized chemotherapy in patients with bladder cancer. To achieve this, the researchers intend to test the predictive power of both immune system components (CXCL11 and CXCR3alt) using a process known as 'predictive validation', which will involve the study of independent groups of patients with muscle-invasive bladder cancer at various European hospitals. "Should the method's predictive reliability be confirmed, the analysis of a patient's immune status could become a routine tool to support decision-making in the treatment of bladder cancer," says Dr. Schmück-Henneresse.
*Vollmer T et al., The intratumoral CXCR3 chemokine system is predictive of chemotherapy response in human bladder cancer. Sci Transl Med 2021 Jan 13. doi: 10.1126/scitranslmed.abb3735

Charité - Universitätsmedizin Berlin

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to