40,000-year-old skull shows both modern human and Neandertal traits

January 15, 2007

Humans continued to evolve significantly long after they were established in Europe, and interbred with Neandertals as they settled across the continent, according to new research published this week in the Proceedings of the National Academy of Sciences (PNAS) USA.

Professor Joao Zilhao of the University of Bristol, Professor Erik Trinkaus of Washington University and colleagues in Europe compared the features of an early modern human cranium found in the Peºtera cu Oase (the Cave with Bones) in southwestern Romania with other human samples from the period (the Late Pleistocene). Differences between the skulls suggest complex population dynamics as modern humans dispersed into Europe.

The different fragments of the reconstructed cranium - named Oase 2 - were found in a Late Pleistocene bone bed principally containing the remains of cave bears. They were recovered during a systematic excavation project directed by Professor Trinkaus and Professor Zilhao between 2003 and 2005.

Radiocarbon dating of the specimen produced only a minimum age (more than 35,000 years), but similarity in morphological traits with the Oase 1 human mandible - found in 2002 on the surface of the cave, adjacent to the excavation area, and dated to about 40,500 years ago - lead the team to conclude that the two fossils were the same age. These are the earliest modern human remains so far found in Europe and represent our best evidence of what the modern humans who first dispersed into Europe looked like.

By comparing it with other skulls, Professor Zilhao and colleagues found that Oase 2 had the same proportions as modern human crania and shared a number of modern human and/or non-Neandertal features.

However, there were some important differences: apparently independent features that are, at best, unusual for a modern human. These included frontal flattening, a fairly large juxtamastoid eminence and exceptionally large upper molars with unusual size progression which are found principally among the Neandertals.

Professor Zilhao said: "Such differences raise important questions about the evolutionary history of modern humans. They could be the result of evolutionary reversal or reflect incomplete palaeontological sampling of Middle Paleolithic human diversity.

"They could also reflect admixture with Neandertal populations as modern humans spread through western Eurasia. This mixture would have resulted in both archaic traits retained from the Neandertals and unique combinations of traits resulting from the blending of previously divergent gene pools.

"The ultimate resolution of these issues must await considerations of larger samples of European early modern humans and chronologically intervening specimens. But this fossil is a major addition to the growing body of fossil, genetic and archaeological evidence indicating significant levels of biological and cultural interaction between modern humans and the anatomically archaic populations (including the Neandertals) they met along the way as they spread from Africa into Eurasia."

It is apparent that the Oase 2 cranium indicates there was significant modern human morphological evolution since the early Upper Paleolithic, the researchers conclude. Oase 2 is 'modern' in its abundance of derived modern human features, but it remains 'nonmodern' in its complex constellation of archaic and modern features.
-end-
Paper

Pestera cu Oase 2 and the cranial morphology of early modern Europeans by Helene Rougier, Stefan Milota, Ricardo Rodrigo, Mircea Gherase Laurentiu Sarcina, Oana Moldovan, Joao Zilhao, Silviu Constantin, Robert G. Franciscus, Christoph P. E. Zollikofer, Marcia Ponce-de-Leon and Erik Trinkaus www.pnas.org/cgi/doi/10.1073/pnas.0610538104

University of Bristol

Related Modern Humans Articles from Brightsurf:

Paleogenomics -- the prehistory of modern dogs
An international team of scientists has used ancient DNA samples to elucidate the population history of dogs.

Modern humans took detours on their way to Europe
Climate conditions shaped the geography of settlement by Homo sapiens in the Levant 43,000 years ago / findings of Collaborative Research Centre 806 'Our Way to Europe' published in 'PLOS ONE'

Studying the Neandertal DNA found in modern humans using stem cells and organoids
Protocols that allow the transformation of human induced pluripotent stem cell (iPSC) lines into organoids have changed the way scientists can study developmental processes and enable them to decipher the interplay between genes and tissue formation, particularly for organs where primary tissue is not available.

ADHD: genomic analysis in samples of Neanderthals and modern humans
The frequency of genetic variants associated with attention-deficit/hyperactivity disorder (ADHD) has decreased progressively in the evolutionary human lineage from the Palaeolithic to nowadays, according to a study published in the journal Scientific Reports.

Modern humans, Neanderthals share a tangled genetic history, study affirms
A new study reinforces the concept that Neanderthal DNA has been woven into the modern human genome on multiple occasions as our ancestors met Neanderthals time and again in different parts of the world.

Europe's Neanderthals relied on the sea as much as early modern humans
The first significant evidence of marine resource use among Europe's Neanderthals is detailed in a new report, demonstrating a level of marine adaptation previously only seen in their contemporary modern humans living in southern Africa.

Infectious disease defenses among ancient hominid contributions to adaptation of modern humans
In a new study published in the advanced online edition of Molecular Biology and Evolution, scientists Alexandre Gouy and Laurent Excoffier have developed new computational tools to better analyze human genome datasets, and found more evidence of a legacy of ancient hominid adaptation, particularly to help fight off infectious diseases like malaria.

Early modern humans cooked starchy food in South Africa, 170,000 years ago
The inhabitants of the Border Cave in the Lebombo Mountains on the Kwazulu-Natal/eSwatini border were cooking starchy plants 170,000 years ago.

Researchers determine age for last known settlement by a direct ancestor to modern humans
An international team of researchers has determined the age of the last known settlement of the species Homo erectus, one of modern humans' direct ancestors.

The homeland of modern humans
A landmark study pinpoints the birthplace of modern humans in southern Africa and suggests how past climate shifts drove their first migration.

Read More: Modern Humans News and Modern Humans Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.