Oldest trees are growing faster, storing more carbon as they age

January 15, 2014

CORVALLIS, Ore. - In a finding that overturns the conventional view that large old trees are unproductive, scientists have determined that for most species, the biggest trees increase their growth rates and sequester more carbon as they age.

In a letter published today in the journal Nature, an international research group reports that 97 percent of 403 tropical and temperate species grow more quickly the older they get. The study was led by Nate L. Stephenson of the U.S. Geological Survey Western Ecological Research Center. Three Oregon State University researchers are co-authors: Mark Harmon and Rob Pabst of the College of Forestry and Duncan Thomas of the College of Agricultural Sciences.

The researchers reviewed records from studies on six continents. Their conclusions are based on repeated measurements of 673,046 individual trees, some going back more than 80 years.

This study would not have been possible, Harmon said, without long-term records of individual tree growth. "It was remarkable how we were able to examine this question on a global level, thanks to the sustained efforts of many programs and individuals."

Extraordinary growth of some species, such as Australian mountain ash - also known as eucalyptus - (Eucalyptus regnans), and the coast redwood (Sequoia sempervirens) is not limited to a few species, the researchers said. "Rather, rapid growth in giant trees is the global norm and can exceed 600 kg (1,300 pounds) per year in the largest individuals," they wrote.

"In human terms, it is as if our growth just keeps accelerating after adolescence, instead of slowing down," said Stephenson. "By that measure, humans could weigh half a ton by middle age, and well over a ton at retirement."

The report includes studies from the Pacific Northwest. Harmon and his colleagues worked in forest plots - some created as early as the 1930s - at the H.J. Andrews Experimental Forest east of Eugene and Mount Rainier National Park. Researchers measured growth in Douglas-fir, western hemlock, Sitka spruce, western red cedar and silver fir. The National Science Foundation and the Pacific Northwest Research Station of the USDA Forest Service provided funding.

Under the auspices of the Smithsonian Institution's Center for Tropical Forest Science, Thomas and colleagues in Africa established a 123-acre forest research site in Cameroon in 1996. They measured growth in about 495 tree species.

"CTFS does very important work facilitating collaboration between forest ecologists worldwide and therefore enabling us to gain a better insight into the growth of trees and forests," Thomas said. "This model for collaboration was the basis of the Nature study."

While the finding applies to individual trees, it may not hold true for stands of trees, the authors cautioned. As they age, some trees in a stand will die, resulting in fewer individuals in a given area over time.
-end-
The study was a collaboration of 38 scientists from research universities, government agencies and non-governmental organizations in the United States, Panama, Australia, United Kingdom, Germany, Colombia, Argentina, Thailand, Cameroon, Democratic Republic of Congo, France, China, Taiwan, Malaysia, New Zealand and Spain.

Oregon State University

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.