Shining a light on quantum dots measurement

January 15, 2015

Due to their nanoscale dimensions and sensitivity to light, quantum dots are being used for a number of bioimaging applications including in vivo imaging of tumor cells, detection of biomolecules, and measurement of pH changes.

When quantum dots are introduced in biological media, proteins surround the nanoparticles and form a corona. The formation of the protein corona changes the sensitivity of the quantum dots to light.

Using the cadmium selenide quantum dot, researchers at Syracuse University collaborated to understand how protein corona forms and what is different about the quantum dot before and after the formation of the corona.

Research performed by Professor Shikha Nangia, in the Department of Biomedical and Chemical Engineering, and Professor Ari Chakraborty, in the Department of Chemistry, resulted in the development of a novel multilevel computational approach. This method combines the strengths of quantum mechanics, molecular mechanics, classical molecular dynamics, and Monte Carlo techniques. Because of this work, it is now possible to perform computer simulation of protein-quantum dot complexes that were previously considered to be beyond the scope of computational investigations. Now that this methodology has been created, it can be applied to bigger and more complex quantum dot systems.
-end-
Their paper, "Optical Signature of Formation of Protein Corona in the Firefly Luciferase-CdSe Quantum Dot Complex" is featured on the cover of the January issue of the Journal of Chemical Theory and Computation.

Syracuse University

Related Quantum Dots Articles from Brightsurf:

Direct visualization of quantum dots reveals shape of quantum wave function
Trapping and controlling electrons in bilayer graphene quantum dots yields a promising platform for quantum information technologies.

Scientists age quantum dots in a test tube
Researchers from MIPT and the RAS Institute of Problems of Chemical Physics have proposed a simple and convenient way to obtain arbitrarily sized quantum dots required for physical experiments via chemical aging.

'Growing' active sites on quantum dots for robust H2 photogeneration
Chinese researchers had achieved site- and spatial- selective integration of earth-abundant metal ions in semiconductor quantum dots (QDs) for efficient and robust photocatalytic H2 evolution from water.

New insights into the energy levels in quantum dots
Researchers from Basel, Bochum and Copenhagen have gained new insights into the energy states of quantum dots.

What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.

Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.

Controlling the charge state of organic molecule quantum dots in a 2D nanoarray
Australian researchers have fabricated a self-assembled, carbon-based nanofilm where the charge state (ie, electronically neutral or positive) can be controlled at the level of individual molecules.

Modified quantum dots capture more energy from light and lose less to heat
Los Alamos National Laboratory scientists have synthesized magnetically-doped quantum dots that capture the kinetic energy of electrons created by ultraviolet light before it's wasted as heat.

Using quantum dots and a smartphone to find killer bacteria
A combination of off-the-shelf quantum dot nanotechnology and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.

Synthesizing single-crystalline hexagonal graphene quantum dots
A KAIST team has designed a novel strategy for synthesizing single-crystalline graphene quantum dots, which emit stable blue light.

Read More: Quantum Dots News and Quantum Dots Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.