Unexpected environmental source of methane discovered

January 15, 2018

An unexpected source of methane in the environment has been inadvertently discovered.

Nitrogen-fixing bacteria are the chief means by which nitrogen gas in the air is changed into a form that plants and animals can use. Roughly 10 percent of these nitrogen-fixing microorganisms contain the genetic code for manufacturing a back-up enzyme, called iron iron-only nitrogenase, to do their job.

Recent research reveals that this enzyme allows these microorganisms to convert nitrogen gas to ammonia and carbon dioxide into methane at the same time. The ammonia is the main product; the methane is only a sideline.

This enzymatic pathway is a previously unknown route for the natural biological production of methane.

The findings are reported Jan. 15 in Nature Microbiology. The senior author is Caroline Harwood, the Gerald and Lyn Grinstein Professor of Microbiology at the University of Washington School of Medicine. The lead author is Yanning Zheng, a postdoctoral student in her lab.

"Methane is potent greenhouse gas. That is why it is important to account for all of its sources," Harwood said.

In addition to being released from fossil fuels, methane also comes from microbial activity. In a single year, microorganisms, including many living in the ocean and decaying swamps, form and consume at least a billion tons of methane.

The archaea, single-cell life forms that tend to like harsh environments, are the main methane generators. To accomplish this, they avail themselves of complex chemical pathways, some of which already have been traced by scientists.

Besides its ecological significance, a better understanding of the various ways microorganisms manufacture methane is medically important. Methane production can play a role in the interactions in microbial communities that inhabit humans and animals. Methane in the gut, for example, is suspected of contributing to some digestive disorders.

However, although iron-only nitrogenase was identified several decades ago, scientists had not yet noticed that it, too, could be used by some microorganisms for methane production.

"It's been a neglected enzyme," Zheng said.

His team is studying an adaptable bacteria that can acquire its energy from a variety of reactions, Rhodopseudomonas palustris. Still, the researchers did not expect that the methane they were seeking would be generated by iron-only nitrogenase in this organism.

"There is now recent evidence that iron-only nitrogenase is active in microbes more often and in more conditions than we had previously thought," Zheng observed.

To make sure this methane-generating pathway was not exclusive to Rhodopseudomonas palustris, they tested for similar abilities in three other nitrogen-fixing bacterial species that have iron-only nitrogenase.

They also examined data that showed that genes for iron-only nitrogenase were detected in a number of physiologically diverse microorganisms that also vary in the conditions under which they survive.

They learned, too, that the Rhodopseudomonas palustris ability to produce even a tiny amount of methane enabled a methane-utilizing bacteria to grow in the same lab culture.

It is likely, according to the researchers, that interactions like these occur in nature and support the activities of methane-oxidizing bacteria. This form of methane production might, for example, help shape microbial community interactions in marine sediments, in the soil, and in microbiomes living in humans and animals.
-end-
The researchers' work was supported by a grant from the U.S. Department of Energy. In addition to several other University of Washington researchers, the team included scientists from Utah State University and Montana State University.

University of Washington Health Sciences/UW Medicine

Related Methane Articles from Brightsurf:

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.

Making more of methane
Looking closely at the chemical process that transforms methane into useful products could help unveil more efficient ways to use natural gas.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.

Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.

Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.

Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.

Read More: Methane News and Methane Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.