Perovskite solar cells: Perfection not required

January 15, 2018

Metal-organic perovskite layers for solar cells are frequently fabricated using the spin coating technique on industry-relevant compact substrates. These perovskite layers generally exhibit numerous holes, yet attain astonishingly high levels of efficiency. The reason that these holes do not lead to significant short circuits between the front and back contact has now been discovered by a HZB team headed by Dr.-Ing. Marcus Baer in cooperation with the group headed by Professor Henry Snaith (Oxford University) at BESSY II.

The early metal-organic perovskites exhibited efficiency levels of only a few per cent (2.2 per cent in 2006). That changed quickly, however: the record level now lies considerably above 22 per cent. The equivalent efficiency increase in the current commercially dominant silicon solar cell technology took more than 50 years. The fact that thin films made of low cost metal-organic perovskites can be produced on a large scale for example by spin coating and subsequently baking (whereby the solvent evaporates and the material crystallizes), makes this technology additionally attractive.

Holes in the perovskite film

Nevertheless, the thin perovskite film that results from spin coating on compact substrates is generally not perfect, but instead exhibits many holes. The samples from the pioneering perovskite group headed by Prof. Henry Snaith exhibit these holes as well. The problem is that these holes could lead to short circuits in the solar cell by the adjacent layers of the solar cell coming into contact. This would reduce the efficiency level considerably, which is not observed.

Thin layer is built up

Now Marcus Bär and his group, together with the Spectro-Microscopy group of the Fritz Haber Institute have carefully examined samples from Henry Snaith. Using scanning electron microscopy, they mapped the surface morphology. They subsequently analysed the sample areas exhibiting holes for their chemical composition using spectromicrographic methods at BESSY II. "We were able to show that the substrate was not really exposed even in the holes, but instead a thin layer is being built up essentially as a result of the deposition and crystallization processes there that apparently prevents short circuits", explains doctoral student Claudia Hartmann.

.. and prevents short circuits

The scientists were able to ascertain at the same time that the energy barrier the charge carriers had to overcome in order to recombine with one another in the event of a direct encounter of the contact layers is relatively high. "The electron transport layer (TiO2) and the transport material for positive charge carriers (Spiro MeOTAD) do not actually come into direct contact. In addition, the recombination barrier between the contact layers is sufficiently high that the losses in these solar cells is minute despite the many holes in the perovskite thin-film", says Bär.
-end-


Helmholtz-Zentrum Berlin für Materialien und Energie

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.