Mysteries of a promising spintronic material revealed

January 15, 2018

RIVERSIDE, Calif. (http://www.ucr.edu) - Researchers at UC Riverside used an unconventional approach to determine the strength of the electron spin interactions with the optical phonons in antiferromagnetic nickel oxide (NiO) crystals.

NiO is a promising material for spintronic devices, where signals are transmitted not by electrical currents but rather by spin waves, consisting of propagating disturbances in the ordering of magnetic materials, in a domino-like fashion. The interdisciplinary team of researchers, led by Alexander Balandin, distinguished professor of electrical and computer engineering, used ultraviolet Raman spectroscopy to investigate how spin ordering affects the energies of phonons in these materials. Phonons are quanta of vibrations of ions, which constitute the crystal lattice of materials. Phonons can interact with electrons and their spins, leading to energy dissipation. Practical applications of spintronic devices in information processing require accurate knowledge of the strength of the electron spin interaction with phonons.

"Despite the fact that nickel oxide has been studied for many years, mysteries remained," Balandin said. "Our results shed light on some of the long-standing puzzles surrounding this material, reveling unusual spin-phonon coupling."

The UC Riverside team also included Jing Shi, professor of physics, and Roger Lake, professor of electrical and computer engineering, in addition to members of their research groups, graduate students, and postdoctoral researchers.

"Our team was able to accomplish this task by using Raman spectroscopy with an ultraviolet laser, instead of conventional visible light lasers. The trick worked because relevant phonon peaks can be seen with much better resolution in the spectrum of nickel oxide under ultraviolet laser excitation," Balandin added.

The investigation of the spin-phonon interaction will have important implications for development of spintronic devices. Unlike conventional electronic transistors, spintronic devices encode and communicate information, not with the electric currents, but rather with the spin currents or spin waves. For this reason, electrically insulating magnetic materials, such as nickel oxide, can be used for memory storage and information processing.

Avoiding electrical currents, spintronic devices have a potential for ultra-fast and low-energy-dissipation operation. Interaction with phonons is one of the energy dissipation mechanisms in spintronics. The data reported by the UCR researchers may help in optimizing the design of spintronic devices by altering phonon properties and the way phonons interact with electron spins.

"We hope that our results will contribute to better understanding of mechanisms of spin wave interactions with the crystal lattice vibrations, and energy loss channels in nickel oxide devices," Balandin said. "The next step will be investigation of the spin-phonon interaction in nanoscale thin films and structures made of this important antiferromagnetic material."

The research was conducted under the auspices of the Spins and Heat in Nanoscale Electronic Systems (SHINES) Energy Frontier Research Center at UC Riverside, which is funded by the U.S. Department of Energy.

Titled "Spin - Phonon Coupling in Antiferromagnetic Nickel Oxide," an article describing the research conducted at UC Riverside was published in the journal Applied Physics Letters. In addition to Balandin, Shi, and Lake, the authors include Ece Aytan, Bishwajit Debnath, Fariborz Kargar, Yafis Barlas, Monica M. Lacerda, and Junxue Li. Aytan, the first author of the paper, who conducted Raman spectroscopy measurements, is a doctoral candidate in Balandin's Phonon Optimized Engineered Materials (POEM) Center at UCR.
-end-


University of California - Riverside

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.